• 제목/요약/키워드: backscattered scanning electron microscope

검색결과 15건 처리시간 0.019초

주사전자현미경용 전자검출기 (The Electron Detector in Scanning Electron Microscope)

  • 이상욱;전종업;한상훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.513-517
    • /
    • 2004
  • The nature of the signals collected by an SEM(Scanning Electron Microscope) in order to form images are all dependent on the detector used to collect them, and the quality of an acquired image is strongly influenced by detector performance. Therefore, the development of detector with high performance is very important in pulling up the resolution of SEM. In this article, electron beam-specimen interactions, the detection principle of secondary electrons and backscattered electrons, and the structure of a conventional detector are described. The structure of an experimental apparatus for the future study on our hopeful novel electron detector is presented as well.

  • PDF

전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석 (Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics)

  • 김흥배
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.

OBSERVATION OF THE MAGNETIC DOMAIN IN THIN-FILM HEADS BY ELECTRON MICROSCOPY

  • Kobayashi, Kazuo
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.710-715
    • /
    • 1995
  • Magnetic domains were observed using an image lock-in technique for backscattered electron contrast (Type II) with a 200 kV scanning electron microscope. Backscattered electrons indicate a difference in magnetic domain structures at the upper and lower parts of the upper pole in thin-film heads, changing the acceleration voltage. With this method, it is also possible to observe the domain structure of the thin-film head pole through a 10 to $20\;\mu\textrm{m}$ protective layer, and the upper shield of the MR head through the coil in the resist, alumina overcoat, and upper pole.

  • PDF

Focused ion beam-scanning electron microscope examination of high burn-up UO2 in the center of a pellet

  • Noirot, J.;Zacharie-Aubrun, I.;Blay, T.
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.259-267
    • /
    • 2018
  • Focused ion beam-scanning electron microscope and electron backscattered diffraction examinations were conducted in the center of a $73\;GWd/t_U\;UO_2$ fuel. They showed the formation of subdomains within the initial grains. The local crystal orientations in these domains were close to that of the original grain. Most of the fission gas bubbles were located on the boundaries. Their shapes were far from spherical and far from lenticular. No interlinked bubble network was found. These observations shed light on previous unexplained observations. They plead for a revision of the classical description of fission gas release mechanisms for the center of high burn-up $UO_2$. Yet, complementary detailed observations are needed to better understand the mechanisms involved.

Specimen Preparation for Scanning Electron Microscope Using a Converted Sample Stage

  • Kim, Hyelan;Kim, Hyo-Sik;Yu, Seungmin;Bae, Tae-Sung
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.214-217
    • /
    • 2015
  • This study introduces metal coating as an effective sample preparation method to remove charge-up caused by the shadow effect during field emission scanning electron microscope (FE-SEM) analysis of dynamic structured samples. During a FE-SEM analysis, charge-up occurs when the primary electrons (input electrons) that scan the specimens are not equal to the output electrons (secondary electrons, backscattered electrons, auger electrons, etc.) generated from the specimens. To remove charge-up, a metal layer of Pt, Au or Pd is applied on the surface of the sample. However, in some cases, charge-up still occurs due to the shadow effect. This study developed a coating method that effectively removes charge-up. By creating a converted sample stage capable of simultaneous tilt and rotation, the shadow effect was successfully removed, and image data without charge-up were obtained.

수종의 상아질 접착제와 복합레진의 적합성에 관한 연구 (A STUDY ON THE COMPATIBILITY OF DENTIN ADHESIVES WITH COMPOSITE RESINS)

  • 박진성;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.214-234
    • /
    • 1995
  • The purpose of this work was to study the compatibility of several commercially available dentin adhesives with composite resins. In this study, V-shaped cavity preparations were created on both buccal and lingual surfaces of 60 extracted human premolars($3mm{\times}3mm{\times}2mm$ deep). Preparations were located such that the occlusal margins were on the enamel and the gingival margins were on the cementum(1mm below the CEJ). These specimens were randomly divided into three equal groups. Three dentin adhesives(Scotchbond Multi-Purpose, All Bond 2, Prisma Universal Bond 3)were applied to the cavity in accordance with each manufacturer's instructions. The teeth in each group were restored with four composite resins(Silux plus, Z100, Bisfil, Prisma TPH) in three increments, with each increment light-cured for 40 seconds. All specimens were exposed to 500 cycles of thermal stress. Specimens then placed in a silver nitrate solution(50% by weight) and stored in darkness for 24 hours. They were then immersed for 6 hours in photographic developing solution under flourescent light. Specimens were sectioned buccolingually through the center of the restoration and observed under a binocular stereoscope. To compare the marginal leakage, ANOVA and Dunkan's multiple range tests were used in analysis. Selected samples were further studied using scanning electron microscopy(XL20, Philips, The Netherlands). The results were as follows. 1. In all groups, the enamel margin showed significantly less leakage than the cementum margin. 2. No statistically significant differences were found in microleakage when composite resins were used with their proprietary dentin adhesives. 3. In comparison between dentin adhesives, Prisma Universal Bond 3 showed significantly less leakage at the enamel margin and Scotch bond multi-purpose showed significantly less leakage at the cementum margin than the other groups. 4. In comparison between composite resins, Silux Plus showed significantly more leakage than other groups at the enamel margin and no statistically significant differences were found in microleakage at the cementum margin. 5. According to the backscattered scanning electron microscope, microleakage occurred via gaps at the dentin adhesives/dentin interface.

  • PDF

고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작 (Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder)

  • 김채훈;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

전계방사형 주사전자현미경에 의한 연속블록면 이미징 (Serial Block-Face Imaging by Field Emission Scanning Electron Microscopy)

  • 김기우
    • Applied Microscopy
    • /
    • 제41권3호
    • /
    • pp.147-154
    • /
    • 2011
  • 후방산란전자(BSE)는 입사전자빔이 시료와 충돌하면서 발생한다. BSE 이미징은 시료의 화학적 특성을 구분할 수 있는 조성대비를 제공한다. 집속이온빔장치(FIB)는 전계방사형 주사전자현미경(FESEM)과 결합할 수 있으므로 이중빔 체계(FIB-FESEM)가 구현된다. 갈륨(Ga) 이온빔으로 10~100 nm 두께로 시료를 절삭할 수 있으므로 FIB-FESEM은 플라스틱으로 포매된 블록의 면을 z축 고해상도를 유지하며 연속적으로 이미징할 수 있다. BSE이미지의 대비를 반전시키면 투과전자현미경의 이미지와 유사하다. 연속블록면 이미징의 또 다른 방안으로써 특수한 초박절편기가 FESEM 내부에 장착된 것이 $3View^{(R)}$로 상용화되어 있다. 이로써 플라스틱으로 포매된 시료의 내부 구조를 넓은 면적을 연속적으로 이미징 할 수 있으므로 3차원 재구성도 용이하게 된다. 이러한 FESEM에 기반한 두 가지 방식은 복잡한 생물계의 총체적인 이해를 위하여 세포 및 세포 수준 이하의 구조물 간의 공간적 연관성을 규명하는 데 활용될 수 있다.

Microstructural Evolution of X20CrMoV12.1 Steel upon Short-term Creep Rupture Test

  • Hino, Mariko;He, Yinsheng;Li, Kejian;Chang, Jungchel;Shin, Keesam
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.164-172
    • /
    • 2013
  • In this work, microstructural and hardness evolution of the X20 steel upon short-term creep test ($550^{\circ}C$ to $650^{\circ}C$, $180^{\circ}C$ to 60 MPa) was studied by using scanning electron microscope, electron backscattered diffraction, and transmission electron microscope, microhardness tester. After creep rupture, gauge and grip part of the specimens were microstructurally analyzed. Creep at the $650^{\circ}C$/60 MPa resulted in a rupture at 1,460 hours with growth of lath width from 1.31 to $2.87{\mu}m$ and a grain growth with a more equiaxed feature. There is a close relationship between Microhardness and lath width. The formation and coarsening of Laves phase, which was observed up to $600^{\circ}C$ of creep temperature, was accelerated by the applied stress. Slight coarsening of the $M_{23}C_6$ was observed in the $550^{\circ}C$ and $600^{\circ}C$ crept or aged specimens. The coarsening of $M_{23}C_6$ depended on the temperature, where specimens crept at $650^{\circ}C$ showed higher growth rate. The microstructural evolution of X20 after short-term creep test was extensively discussed in relation to the long-term creep/aging test reported in literatures.

시멘트계 자기치유 시편에 대한 반사전자현미경 이미지 분석을 위한 함침과 연마의 중요성 (Importance of Impregnation and Polishing for Backscattered Electron Image Analysis for Cementitious Self-Healing Specimen)

  • 김동현;강국희;배승묵;임영진;이승헌
    • 한국건설순환자원학회논문집
    • /
    • 제5권4호
    • /
    • pp.435-441
    • /
    • 2017
  • 자기치유에 관한 연구는 현재 다각화되었으며 연구를 평가하는 방법도 다양해졌다. 그중에서, 스캐닝 전자 현미경(SEM)을 통해 획득된 반사전자(BSE) 이미지는 균열에서의 자기치유 효과를 평가하는 수단으로 시도되었다. BSE 이미지를 평가하기 위해서 정교한 시편 전처리가 대단히 중요하다. 에폭시 함침은 경화체의 입자, 기공과 인공 균열 내부에 투입되어 새롭게 생성된 자기치유 수화물의 구조를 안정화시키고 변형 없이 연삭 및 연마의 응력을 견딜 수 있게 한다. 함침 시편은 표면을 매끄럽게 하고 고해상도의 BSE 영상을 얻기 위해 건조 연마 후 습식 연마용 다이아몬드 서스펜션으로 연마한다. 함침과 연마가 된 자기치유 시편의 자기치유 수화물을 평가한 결과, 생성된 수화물은 인공균열의 표면에 형성되었으며 자기치유 물질은 $Ca(OH)_2$와 C-S-H로 확인되었다.