• Title/Summary/Keyword: backpropagation algorithm

Search Result 350, Processing Time 0.023 seconds

A Study on the Prediction of the Nonlinear Chaotic Time Series Using a Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 비선형 혼돈 시계열의 예측에 관한 연구)

  • Lee, Hye-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2209-2211
    • /
    • 2004
  • Unlike the wavelet neural network, since a mother wavelet layer of the self-recurrent wavelet neural network (SRWNN) is composed of self-feedback neurons, it has the ability to store past information of the wavelet. Therefore we propose the prediction method for the nonlinear chaotic time series model using a SRWNN. The SRWNN model is learned for the modeling of a function such that the inputs arc known values of the time series and the output is the value in the future. The parameters of the network are tuned to minimize the difference between the nonlinear mapping of the chaotic time series and the output of SRWNN using the gradient-descent method for the adaptive backpropagation algorithm. Through the computer simulations, we demonstrate the feasibility and the effectiveness of our method for the prediction of the logistic map and the Mackey-Glass delay-differential equation as a nonlinear chaotic time series.

  • PDF

Friction and Wear Behavior of Carbon/carbon Composite Materials and its Application to a Neural Network (탄소/탄소 복합재료의 마찰 및 마모 거동과 신경회로망에의 적용에 관한 연구)

  • 류병진;윤재륜;권익환
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.13-26
    • /
    • 1994
  • Effects of resin contents, number of carbonization, graphitization, sliding speed, and oxidation on friction and wear behavior of carbon/carbon composite materials were investigated. Friction and wear tests were carried out under various sliding conditions. An experimental setup was designed and built in the laboratory. Stainless steel disks were used as the counterface material. Friction coefficient, emperature, and wear factor were measured with a data acquisition system. Wear surfaces were observed by the scanning electron microscope. It has been shown that the average friction coefficient was increased with the sliding speed in the range of 1.43~6.10 m/s, but it as decreased in the range of 6.10~17.35 m/s. Specimens prepared by different numbers of carbonization. showed variations in friction coefficient and friction coefficient of the graphitized specimen was the highest. Friction coefficients depended on contribution of the plowing and adhesive components. As the number of carbonization was increased, wear factor was reduced. Wear factor of the graphitized specimens dropped further. In the case of graphitized specimens, sliding speed had a large influence on wear behavior. When the tribological experiments were conducted in nitrogen atmosphere, the wear factor was decreased to two thirds of the wear factor obtained in air. It is obvious that the difference was affected by oxidation. Results of friction and wear tests were applied to a neural network system based on the backpropagation algorithm. A neural network may be a valuable tool for prediction of tribological behavior of the carbon/carbon composite material if ample data are present.

Compressive strength prediction of limestone filler concrete using artificial neural networks

  • Ayat, Hocine;Kellouche, Yasmina;Ghrici, Mohamed;Boukhatem, Bakhta
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The use of optimum content of supplementary cementing materials (SCMs) such as limestone filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, such as increase in physical properties, enhancement of sustainability in concrete industry and reducing $CO_2$ emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs training in this study. The training, testing and validation of data during the backpropagation training process yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the developed model to certain essential parameters affecting the compressive strength of concrete. The effects and benefits of limestone filler on hardened properties of the concrete such as compressive strength were well established endorsing previous results in the literature. The results of this study revealed that the proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the LF concrete compressive strength prediction.

Vibration Control a Flexible Single Link Robot Manipulator Using Neural Networks (신경회로망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 진동제어)

  • 탁한호;이상배
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.3
    • /
    • pp.55-66
    • /
    • 1997
  • In this paper, applications of neural networks to vibration control of flexible single link robot manipulator are ocnsidered. The architecture of neural networks is a hidden layer, which is comprised of self-recurrent one. Tow neural networks are utilized in a control system ; one as an identifier is called neuro identifier and the othe ra s a controller is called neuro controller. The neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by dynamic error-backpropagation algorithm(DEA). To guarantee concegence and to get faster learning, an approach that uses adaptive learning rates is developed by introducing a Lyapunov function. When a flexible manipulator is ratated by a motor through the fixed end, transverse vibration may occur. The motor torque should be controlle dinsuch as way, that the motor is rotated by a specified angle. while simulataneously stabilizing vibration of the flexible manipulators so that it is arrested as soon as possible at the end of rotation. Accurate vibration control of lightweight manipulator during the large body motions, as well as the flexural vibrations. Therefore, dynamic models for a flexible single link manipulator is derived, and LQR controller and nerual networks controller are composed. The effectiveness of the proposed nerual networks control system is confirmed by experiments.

  • PDF

Online Reviews Analysis for Prediction of Product Ratings based on Topic Modeling (토픽 모델링에 기반한 온라인 상품 평점 예측을 위한 온라인 사용 후기 분석)

  • Park, Sang Hyun;Moon, Hyun Sil;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.113-125
    • /
    • 2017
  • Customers have been affected by others' opinions when they make a purchase. Thanks to the development of technologies, people are sharing their experiences such as reviews or ratings through online or social network services, However, although ratings are intuitive information for others, many reviews include only texts without ratings. Also, because of huge amount of reviews, customers and companies can't read all of them so they are hard to evaluate to a product without ratings. Therefore, in this study, we propose a methodology to predict ratings based on reviews for a product. In a methodology, we first estimate the topic-review matrix using the Latent Dirichlet Allocation technic which is widely used in topic modeling. Next, we predict ratings based on the topic-review matrix using the artificial neural network model which is based on the backpropagation algorithm. Through experiments with actual reviews, we find that our methodology can predict ratings based on customers' reviews. And our methodology performs better with reviews which include certain opinions. As a result, our study can be used for customers and companies that want to know exactly a product with ratings. Moreover, we hope that our study leads to the implementation of future studies that combine machine learning and topic modeling.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

A Neural Network Based Korean Segmental Duration Modeling Using Tonal Information of Phonemes (음소별 성조 정보를 이용한 신경망 기반의 한국어 음소 지속시간 모델링)

  • 김은경;이상호;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.84-88
    • /
    • 1999
  • The accurate estimation of segmental duration is crucial for natural-sounding text-to-speech synthesis. For predicting Korean segmental durations, conventional methods utilized phonemic context, part-of-speech context and locational information in prosodic phrase. In this paper, the tonal information of phonemes is employed for more accurate prediction. After defining two non-boundary tones and six boundary tones, we annotated the tonal label on each syllable of 400 sentences. To predict segmental duration using tonal information, we constructed neural networks with a real-valued output node predicting phonemic duration and trained them by backpropagation algorithm. Experimental results showed that the proposed features are effective for predicting Korean segmental durations, and we got 0.863 correlation coefficient of the observed durations and predicted ones.

  • PDF

Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2565-2571
    • /
    • 2020
  • Background: Understanding the behaviour of nuclear fuel claddings by conducting burst test on single cladding tube under simulated loss-of-coolant accident conditions and developing theoretical cum empirical predictive computer codes have been the focus of several investigations. The developed burst criterion (a) assumes symmetrical deformation of cladding tube in contrast to experimental observation (b) interpolates the properties of Zircaloy-4 cladding in mixed α+β phase (c) does not account for azimuthal temperature variations. In order to overcome all these drawbacks of burst criterion, it is reasoned that artificial intelligence technique may be a better option to predict the burst parameters. Methods: Artificial neural network models based on feedforward backpropagation algorithm with logsig transfer function are developed. Results: Neural network architecture of 2-4-4-3, that is model with two hidden layers having four nodes in each layer is found to be the most suitable. The mean, maximum, and minimum prediction errors for this optimised model are 0.82%, 19.62%, and 0.004%, respectively. Conclusion: The burst stress, burst temperature, and burst strain obtained from burst criterion have average deviation of 19%, 12%, and 53% respectively whereas the developed neural network model predicted these parameters with average deviation of 6%, 2%, and 8%, respectively.

Auto-tuning of PID controller using Neural Networks and Model Reference Adaptive control (신경망을 이용한 PID 제어기의 자동동조 및 기준모델 적응제어)

  • Kim, S.T.;Kim, J.S.;Seo, Y.O.;Park, S.J.;Hong, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2299-2301
    • /
    • 2000
  • In this paper, the design of PID controller using Neural networks for the control of non-linear system is presented. First, non-linear system is identified using BPN(Backpropagation Network) algorithm. This identified model is connected to the PID controller and the parameters of PID controller are updated to the direction of reducing the difference between the identified model output and model reference output in arbitrary input signal. Therefore, identified model output tracks the model reference output in an acceptable error range and the parameters of controller are updated adaptively. The output of the system has a good performance in case of both noisy and noiseless model reference and we can control the system stable in off-line when the dynamics of the system is changed.

  • PDF

Prediction of compressive strength of lightweight mortar exposed to sulfate attack

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the results of experimental research, and artificial intelligence methods focused on determination of compressive strength of lightweight cement mortar with silica fume and fly ash after sulfate attack. The artificial neural network and the support vector machine were selected as artificial intelligence methods. Lightweight cement mortar mixtures containing silica fume and fly ash were prepared in this study. After specimens were cured in $20{\pm}2^{\circ}C$ waters for 28 days, the specimens were cured in different sulfate concentrations (0%, 1% $MgSO_4^{-2}$, 2% $MgSO_4^{-2}$, and 4% $MgSO_4^{-2}$ for 28, 60, 90, 120, 150, 180, 210 and 365 days. At the end of these curing periods, the compressive strengths of lightweight cement mortars were tested. The input variables for the artificial neural network and the support vector machine were selected as the amount of cement, the amount of fly ash, the amount of silica fumes, the amount of aggregates, the sulfate percentage, and the curing time. The compressive strength of the lightweight cement mortar was the output variable. The model results were compared with the experimental results. The best prediction results were obtained from the artificial neural network model with the Powell-Beale conjugate gradient backpropagation training algorithm.