• Title/Summary/Keyword: backpropagation algorithm

검색결과 351건 처리시간 0.025초

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

차량 번호판 인식 시스템 구현에 관한 연구 (Study on Vehicle License Plate Recognition System)

  • 김현열;이건화;박영록;이승규;박영철;강용석;배철수;이진기
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.113-118
    • /
    • 2013
  • 본 논문에서는 효율적인 번호판 인식을 위하여 번호판 영역 식별과 문자 분리, 문자 인식에 적합한 번호판 인식 시스템을 위한 방법들을 제안하고자한다. 번호판 영역 식별에는 실시간 처리가 가능하도록 속도가 빠르고, 번호판 영역의 누락이 없는 방법이 필요하다. 제안된 알고리즘은 효율성을 입증하기 위하여 역전파 알고리즘만을 이용한 인식시스템과 SVM만을 이용한 인식시스템 그리고 제안한 인식 시스템을 각각 실험하였다. 그 결과 역전파 알고리즘을 이용한 경우 87.9%, SVM의 경우91.4%의 번호판 인식을 한 반면 제안된 알고리즘은 98.6%의 인식률을 나타내어 최소 7.9%에서 최대 12.2%의 인식률이 향상되었다.

인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 - (Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network -)

  • 이금일;임용식;손옥재;정상욱;이종일
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.299-304
    • /
    • 2005
  • 본 연구에서는 인공신경망 알고리즘을 이용하여 생물공정에서 수집된 형광스펙트럼 데이터를 분류, 분석하고 공정변수들을 예측하기 위한 공정의 모델링에 대해서 논의하였다. SOM에 의해 분류된 전파장 스펙트럼 데이터들은 발효공정의 변수와 형광데이터 사이에 비선형관계를 설명하기 위하여 사용되었다. BPNN알고리즘은 SOM에서 분류된 데이터들을 입력자료로 이용하여 공정에 대한 모델식을 세우고, 이를 이용하여 배출가스 내 $CO_2$ 농도 및 발효액 중 세포농도와 같은 공정변수들을 예측하는데 사용되었다. 또한 BPNN 모델은 강력하면서도 훈련데이터의 범위를 넘어서는 공정의 데이터들을 예측할 수 있기 때문에 폭넓은 활용가능성을 가지고 있다.

혼합형 기계 학습 모델을 이용한 프로야구 승패 예측 시스템 (Win/Lose Prediction System : Predicting Baseball Game Results using a Hybrid Machine Learning Model)

  • 홍석미;정경숙;정태충
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제9권6호
    • /
    • pp.693-698
    • /
    • 2003
  • 야구는 매 경기마다 다양한 기록을 생성하며, 이러한 기록을 기반으로 다음 경기에 대한 승패예측이 이루어진다. 프로야구 승패 예측에 대한 연구는 많은 사람들에 의해 행해져 왔으나 아직 이렇다할 결과를 얻지 못하고 있는 상태이다. 이처럼 승패 예측이 어려운 이유는 많은 경기 기록들 중 승패 예측에 영향을 주는 요소의 선별이 어렵고, 예측에 사용된 자료들 간의 중복 요인으로 인해 학습 모델의 복잡도만 증가시킬 뿐 좋은 성능을 보이지 못하고 있다. 이에 본 논문에서는 전문가들의 의견을 바탕으로 학습 요소들을 선택하고, 선택된 자료들을 이용하여 휴리스틱 함수를 구성하였다. 요소들 간의 조합을 통해 예측에 영향을 줄 수 있는 새로운 값을 산출함과 동시에 학습 알고리즘에 사용될 입력 값의 차원을 줄일 수 있는 혼합형 모델을 제안하였다. 그 결과, 학습 알고리즘으로 사용된 역전파 알고리즘의 복잡도를 감소시키고, 프로야구 경기 승패 예측에 있어서도 정확성이 향상되었다.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • 제13권6호
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

신경망를 이용한 무선망에서의 채널 관리 기법 (A Channel Management Technique using Neural Networks in Wireless Networks)

  • 노철우;김경민;이광의;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.115-119
    • /
    • 2006
  • 채널은 무선망에 있어서 한정된 주요 자원 중의 하나이다. 다양한 채널 관리 기법들이 제시되어 왔으며, 최근 들어 가드채널의 최적화 문제가 부각되고 있다. 본 논문에서는 신경망을 이용한 지능적인 채널 관리 기법을 제안한다. 신경망의 학습 데이터 생성과 성능분석을 위하여 SRN(Stochastic Reward Net) 채널 할당 모델이 개발된다. 제안된 기법에서 신경망은 지도학습 방법인 역전파 알고리즘을 이용하여 최적의 가드채널 값 g를 계산하도록 학습한다. 학습된 신경망을 이용하여 최적의 g를 계산하고, 이를 SRN모델에서 구해진 결과와 비교한다. 실험결과는 신경망에서 구한 가드채널 수와 SRN 모델로부터 구한 가드채널 수의 상대적 차이가 없음을 보여준다.

  • PDF

원격탐사를 이용한 수질평가시의 인공신경망에 의한 분석과 기존의 회귀분석과의 비교 (Comparison between Neural Network and Conventional Statistical Analysis Methods for Estimation of Water Quality Using Remote Sensing)

  • 임정호;정종철
    • 대한원격탐사학회지
    • /
    • 제15권2호
    • /
    • pp.107-117
    • /
    • 1999
  • 본 연구에서는 원격탐사를 이용하여 수질 파라미터들을 평가하는데 기존의 다중 회귀나 밴드비 회귀 분석을 이용한 통계적인 방법과 신경망을 이용한 방법을 비교하였다. 사용된 영상은 1996년 3월 18일 대청호 유역의 Landsat TM 영상이며, 30개의 현장 실측치가 위성이 통과하는 시간대에 샘플링되었다. 적용된 신경망은 3개의 층으로 구성된 전향 신경망이며 훈련방법으로는 역전파를 사용하였다. 본 연구에서는 가용한 훈련 데이터 셀이 작으므로 cross-validation 방법이 적용되었다. 비록 기존의 회귀분석에 의한 결과도 어느 정도 유의하게 나왔지만, 신경망에 의한 결과가 훨씬 성공적인 수행을 보여주었다. 신경망을 이용한 수질평가는 신경망이 자료의 비선형적 속성을 잘 반영해주기 때문에 기존의 통계적 기법보다 훨씬 나은 결과를 제공한다고 판단된다.