• Title/Summary/Keyword: backoff algorithm modification

Search Result 3, Processing Time 0.015 seconds

Service Differentiation in Ad Hoc Networks by a Modified Backoff Algorithm (애드혹 네트워크 상에서 backoff 알고리즘 수정에 의한 서비스 차별화)

  • Seoung-Seok Kang;Jin Kim
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.414-428
    • /
    • 2004
  • Many portable devices are coming to be commercially successful and provide useful services to mobile users. Mobile devices may request a variety of data types, including text and multimedia data, thanks to the rich content of the Internet. Different types of data and/or different classes of users may need to be treated with different qualities of service. The implementation of service differentiation in wireless networks is very difficult because of device mobility and wireless channel contention when the backoff algorithm is used to resolve contention. Modification of the t)mary exponential backoff algorithm is one possibility to allow the design of several classes of data traffic flows. We present a study of modifications to the backoff algorithm to support three classes of flows: sold, silver, and bronze. For example, the gold c]ass flows are the highest priority and should satisfy their required target bandwidth, whereas the silver class flows should receive reasonably high bandwidth compared to the bronze class flows. The mixture of the two different transport protocols, UDP and TCP, in ad hoc networks raises significant challenges when defining backoff algorithm modifications. Due to the different characteristics of UDP and TCP, different backoff algorithm modifications are applied to each class of packets from the two transport protocols. Nevertheless, we show by means of simulation that our approach of backoff algorithm modification clearly differentiates service between different flows of classes regardless of the type of transport protocol.

An Improved Backoff Algorithm for the Random Access Protocol for the Ranging Subchannel of IEEE 802.16 Networks (IEEE 802.16 환경의 레인징 부채널에서 랜덤액세스 프로토콜의 Backoff 알고리즘 성능 향상 기법)

  • Kwon, Jeong-Min;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1267-1275
    • /
    • 2007
  • An improved backoff algorithm for retransmission randomization for OFDMA/CDMA/slotted ALOHA used in the ranging subchannel of IEEE 802.16 network is proposed. Exploiting the fact that a base station coordinates channel access using UL-/DL-MAP in the IEEE 802.16 networks, we propose a minor modification of the existing IEEE 802.16 in order to increase throughput, decrease delay variation and achieve a graceful performance degradation in case of overload channel condition of the random access protocol. The algorithm basically estimates the number of backlogged users and arrival rate using which, the BS calculates retransmission probability for the subscriber stations involved in a collision. Computer simulation is performed to demonstrate the effectiveness of the proposed algorithm and to compare the performance with existing binary exponential backoff algorithm.

Implementation of IEEE 802.15.4 Channel Analyzer for Evaluating WiFi Interference (WiFi의 간섭을 평가하기 위한 IEEE 802.15.4 채널분석기의 구현)

  • Song, Myong-Lyol;Jin, Hyun-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • In this paper, an implementation of concurrent backoff delay process on a single chip with IEEE 802.15.4 hardware and 8051 processor core that can be used for analyzing the interference on IEEE 802.15.4 channels due to WiFi traffics is studied. The backoff delay process of IEEE 802.15.4 CSMA-CA algorithm is explained. The characteristics of random number generator, timer, and CCA register included in the single chip are described with their control procedure in order to implement the process. A concurrent backoff delay process to evaluate multiple IEEE 802.15.4 channels is proposed, and a method to service the associated tasks at sequentially ordered backoff delay events occurring on the channels is explained. For the implementation of the concurrent backoff delay process on a single chip IEEE 802.15.4 hardware, the elements for the single channel backoff delay process and their control procedure are used to be extended to multiple channels with little modification. The medium access delay on each channel, which is available after execution of the concurrent backoff delay process, is displayed on the LCD of an IEEE 802.15.4 channel analyzer. The experimental results show that we can easily identify the interference on IEEE 802.15.4 channels caused by WiFi traffics in comparison with the way displaying measured channel powers.