• Title/Summary/Keyword: backoff algorithm, delay

Search Result 40, Processing Time 0.022 seconds

A Study on New DCF Algorithm in IEEE 802.11 WLAN by Simulation (시뮬레이션에 의한 IEEE 802.11 WLAN에서의 새로운 DCF 알고리즘에 관한 연구)

  • Lim, Seog-Ku
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • In this paper, MAC algorithm for the IEEE 802.11 DCF improving the performance is proposed and analyzed by simulation. The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF(Distributed Coordination Function) and PCF(Point Coordination Function). The DCF controls the transmission based on CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance), that decides a random backoff time with the range of CW(Contention Window) for each station. Normally, each station increase the CW to double after collision, and reduces the CW to the minimum after successful transmission. The DCF shows excellent performance relatively in situation that competition station is less but has a problem that performance is fallen from throughput and delay viewpoint in situation that competition station is increased. This paper proposes an enhanced DCF algorithm that increases the CW to maximal CW after collision and decreases the CW smoothly after successful transmission in order to reduce the collision probability by utilizing the current status information of WLAN. To prove efficiency of proposed algorithm, a lots of simulations are conducted and analyzed.

  • PDF

Analysis of Backoff Algorithm for Performance Improvement in WLAN (무선랜에서 성능 향상을 위한 Backoff 알고리즘 분석)

  • Lim, seog-ku
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.564-568
    • /
    • 2008
  • In this paper, MAC(Medium Access Control) algorithm for the IEEE 802.11 DCF(Distributed Coordination Function) improving the performance is proposed and analyzed mathematically. The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF and PCF(Point Coordination Function). The DCF controls the transmission based on CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance). The DCF shows excellent performance relatively in situation that competition station is less but has a problem that performance is fallen from throughput and delay viewpoint in situation that competition station is increased. This paper proposes an enhanced DCF algorithm that increases the CW to maximal CW after collision and decreases the CW smoothly after successful transmission in order to reduce the collision probability by utilizing the current status information of WLAN. To prove efficiency of proposed algorithm, a lots of simulations are conducted and analyzed.

  • PDF

Performance Enhancement of CSMA/CA MAC DCF Protocol for IEEE 802.11a Wireless LANs (IEEE 802.11a 무선 LAN에서 CSMA/CA MAC DCF 프로토콜의 성능 향상)

  • Moon, Il-Young;Roh, Jae-Sung;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • A basic access method using for IEEE 802.11a wireless LANs is the DCF method that is based on the CSMA/CA. But, Since IEEE 802.11 MAC layer uses original backoff algorithm (Exponential backoff method), when collision occurs, the size of contention windows increases the double size. Hence, packet transmission delay time increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs using a proposed enhanced backoff algorithm. From the results, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between TCP packet size and total message transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

Comparison Analysis of Packet Delay Model in IEEE 802.11 Wireless Network (IEEE 802.11 무선망에서의 패킷지연시간 모델 비교분석)

  • Lim, Seog-Ku
    • Journal of Digital Contents Society
    • /
    • v.9 no.4
    • /
    • pp.679-686
    • /
    • 2008
  • Wireless LAN(WLAN) is a rather mature communication technology connecting mobile terminals. IEEE 802.11 is a representative protocol among WLAN technologies. With the rising popularity of delay-sensitive real-time multimedia applications(video, voice and data) in IEEE 802.11 wireless LAN, it is important to study the MAC layer delay performance of WLANs. In this paper, performance for packet delay model that recently have been proposed schemes is analysed in wireless LAN and proved performance results via simulation.

  • PDF

Priority MAC based on Multi-parameters for IEEE 802.15.7 VLC in Non-saturation Environments

  • Huynh, Vu Van;Le, Le Nam-Tuan;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3C
    • /
    • pp.224-232
    • /
    • 2012
  • Priority MAC is an important issue in every communication system when we consider differentiated service applications. In this paper, we propose a mechanism to support priority MAC based on multi-parameters for IEEE 802.15.7 visible light communication (VLC). By using three parameters such as number of backoff times (NB), backoff exponent (BE) and contention window (CW), we provide priority for multi-level differentiated service applications. We consider beacon-enabled VLC personal area network (VPAN) mode with slotted version for random access algorithm in this paper. Based on a discrete-time Markov chain, we analyze the performance of proposed mechanism under non-saturation environments. By building a Markov chain model for multi-parameters, this paper presents the throughput and transmission delay time for VLC system. Numerical results show that we can apply three parameters to control the priority for VLC MAC protocol.

DCCG Algorithm for the IEEE 802.16 BWA System (IEEE 802.16 광대역 무선 액세스 시스템을 위한 DCCG 알고리즘)

  • 김선희;이정규
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.10-16
    • /
    • 2003
  • In this paper, a dynamic contention periods based on the collision group(DCCG) algorithm is proposed for collision resolution in the IEEE 802.16 broadband wireless access network. The DCCG algorithm determines the contention periods according to the a number of collided slot and collided requests to the base station(BS). The DCCG algorithm is useful to improve the performance of throughput and system delay characteristic than binary backoff algorithm.

Analytic Model for Performance Evaluation of B-MAC Protocol under Contention Transmission Condition of Two Senders (두 개의 송신 노드가 경쟁하는 상황의 B-MAC 무선 센서 네트워크 프로토콜 성능 분석을 위한 분석적 모델)

  • Jung, Sung-Hwan;Kwon, Tae-Kyoung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.137-153
    • /
    • 2009
  • In this paper, we present an analytic model that evaluates the performance of B-MAC protocol under contention transmission conditions of two senders in a single-hop wireless sensor network. Our model considers the impact of several important factors such as sleep cycle, the backoff mechanism and incoming traffic loads. After obtaining the service delay distribution of a sending node and expected delay of a receiving node, an iterative algorithm is presented for calculating the performance measures such as expected energy consumption usage per packet and latency. Simulation results show that the proposed analytic model can accurately estimate the performance measures under different traffic conditions.

A delay analysis of multi-access protocol under wireless network (무선환경하에서 Slotted ALOHA 방식의 다중채널 경쟁에 대한 지연시간분석)

  • Hur Sun;Kim Jeong-Kee;Nam Jin-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.129-133
    • /
    • 2005
  • Slotted ALOHA(S-ALOHA) is widely used in local wireless network. We analyze the performance of contention-based model in wireless LAN using S-ALOHA protocol. We analyze the performance of binary exponential backoff (BEB) algorithm under the slotted ALOHA protocol: whenever a node's message which tries to reserve a channel is involved in a collision for the ith time, it chooses one of the next $2^i$ frames with equal probability and attempts the reservation again. We derive the expected access delay and throughput which is defined as the expected number of messages that reserve a channel in a frame. A simulation study is performed to verify our method.

Performance of an Efficient Backoff Retransmission Algorithm with a Proactive Jamming Scheme for Realtime transmission in Wireless LAN (재밍 기반의 재전송 방식을 사용한 무선 LAN에서의 효율적인 실시간 트래픽 전송 방안의 성능 분석)

  • Koo Do-Jung;Yoon Chong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.98-106
    • /
    • 2006
  • In order to provide a realtime transmission over a wireless LAM, we here present a new jamming based retransmission mechanism. In a legacy wireless LAN system, all stations use the binary exponential backoff algorithm to avoid collisions among frames. It is well known that the backoff algorithm causes more collisions as the numbers of active stations increases. This makes transmission of real time traffic hard. In the proposed scheme, when each station senses collisions, it promptly allows to send a jamming signal during a unique jamming window period which is determined by its own channel access count database(CACDB). This jamming windows is chosen not to be overlapped each other by using of CACDB, and thus channel access of another station is prevented. Hereafter the station gets the ownership of the medium when the wireless medium becomes idle after sending the jamming signal and sensing carrier, and then sends frame in medium. In our proposal, repeating collisions is never happened. We here assume that real time traffic use a frame of fixed length in order to make the time for receiving its ACK frame same. Comparing the proposed jamming-based retransmission scheme with the the 802.11 and 802.11e MAC by simulation. one can find that the proposed scheme have advantages in terms of delay, average backoff time, and average number of collisions per frame. One can find that the proposed scheme might be practically applicable to several applications of realtime traffic transmission in wireless LAN systems.

A Virtual Grouping Scheme for Improving the Performance of IEEE 802.11 Distributed Coordination Function (IEEE 802.11 DCF의 성능 향상을 위한 가상 그룹 방법)

  • 김선명;조영종
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.9-18
    • /
    • 2004
  • The IEEE 802.11 Distributed Coordination Function(DCF) protocol provides a contention-based distribution channel access mechanism for stations to share the wireless medium. However, the performance of the DCF drops dramatically in terms of throughput, delay and delay jitter as the number of active stations becomes large. In this paper, we propose a simple and effective scheme, called DCF/VG(Distributed Coordination Function with Virtual Group), for improving the performance of the IEEE 802.11 DCF mechanism. In this scheme, each station independently decides the virtual group cycle using the information provided by the carrier sensing mechanism. The virtual group cycle consists of one or more virtual groups and a virtual group includes an idle period and a busy period. Each station operates in only one out of several virtual groups of the virtual group cycle and does not operate in the others. In other words, each station decreases its backoff counter and tries to transmit a packet only in its virtual group like the IEEE 802.11 DCF. Performance of the proposed scheme is investigated by numerical analysis and simulation. Numerical and simulation results show that the proposed scheme is very effective and has high throughput and low delay and jitter under a wide range of contention level.