• Title/Summary/Keyword: backoff algorithm, delay

Search Result 40, Processing Time 0.029 seconds

A Multi-Priority Service Differentiated and Adaptive Backoff Mechanism over IEEE 802.11 DCF for Wireless Mobile Networks

  • Zheng, Bo;Zhang, Hengyang;Zhuo, Kun;Wu, Huaxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3446-3464
    • /
    • 2017
  • Backoff mechanism serves as one of the key technologies in the MAC-layer of wireless mobile networks. The traditional Binary Exponential Backoff (BEB) mechanism in IEEE 802.11 Distributed Coordination Function (DCF) and other existing backoff mechanisms poses several performance issues. For instance, the Contention Window (CW) oscillations occur frequently; a low delay QoS guarantee cannot be provided for real-time transmission, and services with different priorities are not differentiated. For these problems, we present a novel Multi-Priority service differentiated and Adaptive Backoff (MPAB) algorithm over IEEE 802.11 DCF for wireless mobile networks in this paper. In this algorithm, the backoff stage is chosen adaptively according to the channel status and traffic priority, and the forwarding and receding transition probability between the adjacent backoff stages for different priority traffic can be controlled and adjusted for demands at any time. We further employ the 2-dimensional Markov chain model to analyze the algorithm, and derive the analytical expressions of the saturation throughput and average medium access delay. Both the accuracy of the expressions and the algorithm performance are verified through simulations. The results show that the performance of the MPAB algorithm can offer a higher throughput and lower delay than the BEB algorithm.

Implementation of IEEE 802.15.4 Channel Analyzer for Evaluating WiFi Interference (WiFi의 간섭을 평가하기 위한 IEEE 802.15.4 채널분석기의 구현)

  • Song, Myong-Lyol;Jin, Hyun-Joon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • In this paper, an implementation of concurrent backoff delay process on a single chip with IEEE 802.15.4 hardware and 8051 processor core that can be used for analyzing the interference on IEEE 802.15.4 channels due to WiFi traffics is studied. The backoff delay process of IEEE 802.15.4 CSMA-CA algorithm is explained. The characteristics of random number generator, timer, and CCA register included in the single chip are described with their control procedure in order to implement the process. A concurrent backoff delay process to evaluate multiple IEEE 802.15.4 channels is proposed, and a method to service the associated tasks at sequentially ordered backoff delay events occurring on the channels is explained. For the implementation of the concurrent backoff delay process on a single chip IEEE 802.15.4 hardware, the elements for the single channel backoff delay process and their control procedure are used to be extended to multiple channels with little modification. The medium access delay on each channel, which is available after execution of the concurrent backoff delay process, is displayed on the LCD of an IEEE 802.15.4 channel analyzer. The experimental results show that we can easily identify the interference on IEEE 802.15.4 channels caused by WiFi traffics in comparison with the way displaying measured channel powers.

A Reactive Cross Collision Exclusionary Backoff Algorithm in IEEE 802.11 Network

  • Pudasaini, Subodh;Chang, Yu-Sun;Shin, Seok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1098-1115
    • /
    • 2010
  • An inseparable challenge associated with every random access network is the design of an efficient Collision Resolution Algorithm (CRA), since collisions cannot be completely avoided in such network. To maximize the collision resolution efficiency of a popular CRA, namely Binary Exponential Backoff (BEB), we propose a reactive backoff algorithm. The proposed backoff algorithm is reactive in the sense that it updates the contention window based on the previously selected backoff value in the failed contention stage to avoid a typical type of collision, referred as cross-collision. Cross-collision would occur if the contention slot pointed by the currently selected backoff value appeared to be present in the overlapped portion of the adjacent (the previous and the current) windows. The proposed reactive algorithm contributes to significant performance improvements in the network since it offers a supplementary feature of Cross Collision Exclusion (XCE) and also retains the legacy collision mitigation features. We formulate a Markovian model to emulate the characteristics of the proposed algorithm. Based on the solution of the model, we then estimate the throughput and delay performances of WLAN following the signaling mechanisms of the Distributed Coordination Function (DCF) considering IEEE 802.11b system parameters. We validate the accuracy of the analytical performance estimation framework by comparing the analytically obtained results with the results that we obtain from the simulation experiments performed in ns-2. Through the rigorous analysis, based on the validated model, we show that the proposed reactive cross collision exclusionary backoff algorithm significantly enhances the throughput and reduces the average packet delay in the network.

Analysis of MIMD Backoff Algorithm for IEEE 802.11 DCF (IEEE 802.11 DCF를 위한 MIMD 백오프 알고리즘 분석)

  • Lim, Seog-Ku
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.299-307
    • /
    • 2011
  • The MAC of IEEE 802.11 WLAN to control data transmission uses two control methods called DCF and PCF. The DCF controls the transmission based on CSMA/CA The BEB backoff algorithm of DCF shows relatively excellent performance in situation that the number of competing station is less, but has a problem that performance of throughput and delay is degraded in situation that the number of competing station is increased. This paper mathematically analyzes an MIMD backoff algorithm considering retry limit that increases the CW to doubled after collision and decreases smoothly the CW to halves after successful transmission in order to reduce the collision probability. To prove efficiency of the MIMD backoff algorithm, lots of simulations are conducted and analyzed.

Improved Unslotted IEEE 802.15.4 Algorithm for HAN in Smart Grids (스마트그리드 HAN을 위한 개선된 Unslotted IEEE 802.15.4 알고리즘)

  • Hwang, Sung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1711-1717
    • /
    • 2014
  • There have been many studies on IEEE 802.15.4 for home area networks(HAN) in Smart Grids. Existing unslotted or slotted IEEE 802.15.4 has almost not met strict conditions of the U.S. Department Of Energy(DOE). This study proposed a improved algorithm that reduces collisions, delay time and changes in the delay time. For this purpose, numbers were given to nodes to make the transmission in the order of the node numbers. Since the probability of the occurrence of collisions would decrease compared to random transmission if the nodes were given numbers, Backoff time was set at 0. In the proposed Numbered-Unslotted-ZeroBackoff algorithm, when the packet size was 133 octets and less than 180 packets per second occurred, it was found that packet delivery ratio was over 99.99%, and that all the maximum delay, the mean delay and the minimum delay were less than 0.02 seconds. This paper could confirm that the algorithm proposed in this study met the strict conditions of the DOE.

Variable Backoff Stage(VBS) Algorithm to Reduce Collisions in IEEE 802.11 DCF (IEEE 802.11 DCF 에서의 충돌 감소를 위한 가변 백오프 스테이지(VBS) 알고리즘)

  • Kang, Seongho;Choo, Young-yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1333-1340
    • /
    • 2015
  • IEEE 802.11 MAC(Media Access Control) defines DCF(Distributed Coordination Function) for data transmission control. BEB(Binary Exponential Backoff) algorithm of DCF has a problem that if the number of stations connected are over a certain threshold, it degrades network performance because of packet collisions caused from the minimum contention window size. To cope with this problem, we proposed a novel algorithm, named as VBS(Variable Backoff Stage) algorithm, which adjusts the rate of backoff stage increment depending on the number of stations associated with an AP(Access Point). Analytic model of proposed algorithm was derived and simulations on the BEB and the VBS algorithms have been conducted on the OFDM (Orthogonal Frequency Division Multiplexing) method. Simulation results showed that when the rate of backoff state increment was 5 and 10, the number of retransmission were reduced to 1/5 and 1/10 comparing to that of BEB, respectively. Our algorithm showed improvement of 19% and 18% in network utilization, respectively. Packet delay was reduced into 1/12.

A Study on CSMA/CA for IEEE 802.11 WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.71-74
    • /
    • 2006
  • A basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size Also, a time of packet transmission delay increases and efficienty is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (A WGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

A Study on CSMA/CA for WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • Recently, a basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size. Also, a time of packet transmission delay increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (AWGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

Backoff-based random access algorithm for offering differentiated QoS services in the random access channels of OFDMA systems (OFDMA 시스템 상향 링크에서, 임의 접근 채널의 차별화된 서비스 품질 제공을 위한 Backoff 기반 임의 접근 알고리즘 및 그 성능 분석)

  • Lee, Young-Du;Koo, In-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.360-368
    • /
    • 2008
  • In this paper, in order that the various QoS(Qualify of Service)s that are required by different traffic class are guaranteed in the random access channels in multi-service multi-user OFDMA systems, the backoff-based random access algorithm is proposed and corresponding performance is analyzed in terms of the access success probability, the throughput, the average delay and the blocking probability. Through the numerical analysis, it is shown that the proposed backoff-based random access algorithm can provide the differentiated QoSs to random access attempts according to their service class.

The Probability Based Ordered Media Access (IEEE 802-15.4에서 우선순위 IFS를 이용한 확률기반 매체 접근 방법)

  • Jean, Young-Ho;Kim, Jeong-Ah;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.321-323
    • /
    • 2006
  • The IEEE 802.15.4 uses a CSMA/CA algorithm on access of media. The CSMA/CA algorithm does Random Backoff before the data is transmitted to avoid collisions. The random backoff is a kind of unavoidable delays and introduces the side effect of energy consumptions. To cope with those problems we propose a new media access algorithm, the Priority Based Ordered Media Access (PBOMA) algorithm, which uses different IFSs. The PBOMA algorithm uses Sampling Rate and Beacon Interval to get a different access probability(or IFS). The access probability is higher, the IFS is shorter. Note that The transfer of urgent data uses tone signal to transmit it immediately. The proposed algorithm is expected to reduce the energy consumptions and the delay.

  • PDF