• Title/Summary/Keyword: background EEG

Search Result 97, Processing Time 0.02 seconds

Changes of Electroencephalography & Cognitive Function in Subjects with White Matter Degeneration (대뇌 백질 변성을 보인 환자에서의 뇌파와 인지기능의 변화)

  • Kwon, Do-Hyoung;Yu, Sung-Dong;Lee, Ae-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Background : Spatial analysis of EEG is a phenomenal assessment and not so informative for phase space and dynamic aspect of EEG data. In contrast, nonlinear EEG analysis attempts to characterize the dynamics of neural networks in the brain. We have analyzed the features of EEG nonlinearly in subjects with white matter change on brain MRI and compared the results with cognitive function in each. Methods : Digital EEG data were taken for 30 seconds in 9 subjects with white matter degeneration and in 5 healthy normal controls without white matter change on MRI. Then we analyzed them nonlinearly to calculate the correlation dimension(D2) using the MATLAB software. The cognitive function was assessed by 3MS(modified mini-mental state examination). The severity of white matter change was assessed by Scheltens scale. Results : The mean D2 value of normal control was greater than that of white matter degeneration group. The D2s of some channels were correlative with 3MS and degree of white matter degeneration significantly. Conclusions : nonlinear analysis of EEG can be used as one of adjuvant functional studies for prediction of cognitive impairment in subjects with white matter degeneration and subcortical white matter change can be influential on cognitive function and correlation dimension of EEG.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Nonlinear Correlation Dimension Analysis of EEG and HRV (뇌파의 상관차원과 HRV의 상관분석)

  • Kim, Jung-Gyun;Park, Young-Bae;Park, Young-Jae;Kim, Min-Yong
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.2
    • /
    • pp.84-95
    • /
    • 2007
  • Background and Purpose: We have studied the trends of EEG signals in the voluntary breathing condition by applying the fractal analysis. According to chaos theory, irregularity of EEG signals can result from low dimensional deterministic chaos. A principal parameter to quantify the degree of Chaotic nonlinear dynamics is correlation dimension. The aim of this study was to analyze correlation between the correlation dimension of EEG and HRV(heart rate variability). We have studied the trends of EEG signals in the voluntary breathing condition by applying the fractal analysis. Methods: EEG raw data were measured by moving windows during 15 minutes. Then, the correlation dimension(D2) was calculated by each 40-seconds-segment in 15 minutes data, totally 36 segments. 8 channels EEG study on the Fp, F, T, P was carried out in 30 subjects. Results and Conclusion: Correlation analysis of HRV was calculated with deterministic non-linear data and stochastic non-linear data. 1. Ch1(Fp1), Ch4(F3), Ch4(F4) is positive correlated with In LF. 2. Ch1(Fp1), Ch3(F3) is positive correlated with In TF.

  • PDF

Correlation over Nonlinear Analysis of EEG and TCI Factor (상관차원에 의한 비선형 뇌파 분석과 기질성격척도(TCI) 요인간의 상관분석)

  • Park, Jin-Sung;Park, Young-Bae;Park, Young-Jae;Huh, Young
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.2
    • /
    • pp.96-115
    • /
    • 2007
  • Background and Purpose: Electroencephalogram(EEG) is a multi-scaled signal consisting of several components of time series with different origins. Recently, because of the absence of an identified metric which quantifies the complex amount of information, there are many limitations in using such a linear method. According to chaos theory, irregular signals of EEG can also result from low dimensional deterministic chaos. Chaotic nonlinear dynamics in the EEG can be studied by calculating the correlation dimension. The aim of this study is to analyze correlation between the correlation dimension of EEG and psychological Test (TCI). Methods: Before and after moxibustion treatment, EEG raw data were measured by moving windows during 15 minutes. The correlation dimension(D2) was calculated from stabilized 40 seconds in 15 minutes data. 8 channels EEG study on the Fp, F, T, P was carried out in 30 subjects. Results: Correlation analysis of TCI test is calculated with deterministic non-linear data and stochastic non-linear data. 1. Novelty seeking in temperament is positive correlated with D2 of EEG on Fp. 2. reward dependence in temperament is positive correlated with D2 of EEG on T3,T4 and negative correlated with D2 of EEG on P3,P4. 3. self directedness in character is positive correlated with D2 of EEG on F4, P3. 4. Harm avoidance is negative correlated with D2 of EEG on Fp2, T3, P3. Conclusion: These results suggest that nonlinear analysis of EEG can quantify dynamic state of brain abolut psychological Test (TCI).

  • PDF

The Feacture Extraction of Background EEG in the Time Domain by LS Prony Method. (LS Prony에 의한 시간영역에서의 배경뇌파 특징추출)

  • Ju, Dae-Seong;Hwang, Su-Yong;Choe, Gap-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1989
  • In this paper the feature of background EEG is extracted by LS Prony Method for the analysis of background EEG in the time domain. Autocorrelation leg estimates are not required with the LS Prony method. The Prony method is required any the solution of two serfs of simultaneous linear equation and a polynominal rooting. That the optimal order of this model is the 6-th order is determined by using Akaike' s Information Criterial test. From the experimential results the alpha band amplitude is the largest among alpha band beta band theta band delta band and beta band amplitude is larger than that of the delta band and theta band. The sustained time for the alph a band, the beta band, the delta band and the theta band is 2, 3461 (sec), 0.6490(sec), 0.3120(sec), 0.7046(sec) respectively. Consequenty the alpha band is maintained in the whole subjects, the beta band, the delta band, the theta band are existed intermittently in each subjects.

  • PDF

Power Spectrum Estimation of EEG Signal Using Robust Filter (로버스트 필터를 이용한 EEG 신호의 스펙트럼 추정)

  • 김택수;허재만
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • Background EEG signals can be represented as the sum of a conventional AR process and an innovation process. It Is know that conventional estimation techniques, such as least square estimates (LSE) or Gaussian maximum likelihood estimates (MLE-G ) are optimal when the innovation process satisfies the Gaussian or presumed distribution. When the data are contaminated by outliers, however, these assumptions are not met and the power spectrum estimated by conventional estimation techniques may be fatally biased. EEG signal may be affected by artifacts, which are outliers in the statistical term. So the robust filtering estimation technique is used against those artifacts and it performs well for the contaminated EEG signal.

  • PDF

Correlation Analysis for Correlation Dimesion of EEG and Cold-heat Score (뇌파의 상관차원과 한열설문지와의 상관분석)

  • Bas, No-Soo;Park, Young-Jae;Oh, Hwan-Sup;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.2
    • /
    • pp.116-127
    • /
    • 2007
  • Background and Purpose: Acording to chaos theory, irregular signals of electroencephalogram can interpretated by nonlinear method. Chaotic nonlinear dynamics in EEG can be studied by calculating the correlation dimension. The aim of this study is to analyze EEG by correlation dimension and do Correlation Analysis of correlation dimension and cold-heat score Method: EEG raw data were measured during 15 minutes and choosed 40 seconds. We calculated correlation dimension and used surrogate data method for checking nonlinear data. After then do correlation analysis Result and Conclusion: Correlation dimension of channel 7 and channel 8 are showed significant correlation with cold score.

  • PDF

Correlation over Nonlinear Analysis of EEG and POMS Factor (뇌파와 POMS(Profile of Mood States)의 상관성 연구)

  • Kim, Dong-Won;Park, Young-Bae;Park, Young-Jae;Heo, Young
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.2
    • /
    • pp.68-83
    • /
    • 2007
  • Background and Purpose: According to chaos theory, irregular signals of electroencephalogram can interpretated by nonlinear method. Chaotic nonlinear dynamics in EEG can be studied by calculating the correlation dimension. The aim of this study is to analyze EEG by correlation dimension and do Correlation Analysis of correlation dimension and K-POMS factors score. Method: EEG raw data were measured during 15 minutes and choosed 40 seconds. We calculated correlation dimension and used surrogate data method for checking nonlinear data. After then do correlation analysis. Result and Conclusion: Correlation dimension of channel 6, channel 7 and channel 8 are showed significant correlation with vigor factor.

  • PDF

Comparative Study using EEG between Music Major Group and Non-major Group

  • Jeong, Su-Yeon;Lee, Hyeseung;Lee, Naesun;Choi, Doo-Hyun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.421-427
    • /
    • 2013
  • Objective: This paper is to analyze the impact of musical training to the fast ${\alpha}$ wave activation of the EEG. Background: EEG is neurological research method that can observe the brain function in real time. EEG can be used to determine the nervousness and relaxedness of a person who receives stimuli in a structured environment. Therefore, it is possible to interpret the functional state of human brain by the analysis of EEG. Method: The brain activities of two groups of university students in the point of RFA(Relative Fast Alpha) caused by different music are analyzed in this paper. One is the group of music majors and the other is the group of non-majors. Results: Music major and non-major groups show meaningful differences in RFA during exposed to classic and metal music. Conclusion: Learning experience on music affects RFA increment of music majors. Application: The result of this study will be used as basic data to evaluate the learning effects of students who want to study music.

Power spectrum estimation of EEG signal using robust method (로보스트 방법을 이용한 EEG 신호의 전력밀도 추정)

  • 김택수;허재만;김종순;유선국;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.736-740
    • /
    • 1991
  • EEG(Electroencephalogram) background signals can be represented as the sun of a conventional AR(Autoregressive) process and an innovation process, or a prediction error process. We have seen that conventional estimation techniques. such as least square estimates(LSE) or Gaussian maximum likelihood estimates(MLE-G) are optimal when the innovation process satisfies the Gaussian or presumed distribution. But when the data are contaminated by outliers, or artifacts, these assumptions are not met and conventional estimation techniques can badly fall and be strongly biased. It is known that EEG can be easily affected by artifacts. So we suggest a robust estimation technique which considerably performs well against those artifacts.

  • PDF