• Title/Summary/Keyword: back-propagation teaming algorithm

Search Result 28, Processing Time 0.034 seconds

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF

Robust Audio Watermarking Using HAS and Neural Network (신경망과 HAS을 이용한 강인한 오디오 워터마킹 알고리즘)

  • Jung, Se-Won;Piao, Cheng-Ri;Han, Seung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2101-2102
    • /
    • 2006
  • In this paper, a new digital audio watermarking algorithm is presented. The proposed algorithm embeds watermark into audio signal based on human auditory system (HAS). This algorithm is a blind audio watermarking method, which does not require any prior information during watermark extraction process. This algorithm finds watermarking position using time-domain masking effect. First we insert the watermark into wavelet domain, and then we use a back-propagation neural network (BPN) to learn the characteristics of relationship between the watermark and the watermarked audio. Due to the teaming and adaptive capabilities of the BPN, the false recovery of the watermark can be greatly reduced by the trained BPN. Experimental results show that the proposed method has good inaudibility and high robustness to common audio processing attacks.

  • PDF

A Framework for an Advanced Learning Mechanism in Context-aware Systems using Improved Back-Propagation Algorithm (상황 인지 시스템에서 개선된 역전파 알고리즘을 사용하는 진보된 학습 메커니즘을 위한 프레임워크)

  • Zha, Wei;Eo, Sang-Hun;Kim, Gyoung-Bae;Cho, Sook-Kyoung;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.139-144
    • /
    • 2007
  • In seeking to improve the workload efficiency and inference capability of context-aware systems, we propose a new framework for an advanced teaming mechanism that uses improved bath propagation (BP) algorithm. Even though a learning mechanism is one of the most important parts in a context-aware system, the existing algorithms focused on facilitating systems by elaborating the learning mechanism with user's context information are rare. BP is the most adaptable algorithm for learning mechanism of context-aware systems. By using the improved BP algorithm, the framework we proposed drastically improves the inference capability so that the overall performance is far better than other systems. Also, using the special system cache, the framework manages the workload efficiently. Experiments show that there is an obvious improvement in overall performanre of the context-awareness systems using the proposed framework.

The Trace Algorithm of Mobile ]Robot System Using Neural Network

  • Kim, Seong-Joo;Nam, Seong-Jin;Seo, Jae-Yong;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1889-1892
    • /
    • 2002
  • In this paper, we propose the self-autonomous algorithm for mobile robot system (MRS). The proposed mobile robot system which is learned by learning with the neural network can trace the target at the same distances. The mobile robot can use ultrasonic sensors and calculate the distance between target and mobile robot. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF

Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map (자기조직화 특징지도를 이용한 회전기계의 이상진동진단)

  • Seo, Sang-Yoon;Lim, Dong-Soo;Yang, Bo-Suk
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF

An Implementation of the Controller for Intelligent Process System using Neural Network (신경회로망을 이용한 지능형 가공 시스템 제어기 구현)

  • 김관형;강성인;이태오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1135-1141
    • /
    • 2004
  • In this study, this system makes use of the analog infrared rays sensor and converts the feature of fish outline when sensor is operating with CPU(80C196KC). Then, after signal processing, this feature is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error back propagation is used as a teaming algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long when random initial weights are used, off-line teaming is induced to decrease the progress time.

Parameter Estimation of Recurrent Neural Networks Using A Unscented Kalman Filter Training Algorithm and Its Applications to Nonlinear Channel Equalization (언센티드 칼만필터 훈련 알고리즘에 의한 순환신경망의 파라미터 추정 및 비선형 채널 등화에의 응용)

  • Kwon Oh-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.552-559
    • /
    • 2005
  • Recurrent neural networks(RNNs) trained with gradient based such as real time recurrent learning(RTRL) has a drawback of slor convergence rate. This algorithm also needs the derivative calculation which is not trivialized in error back propagation process. In this paper a derivative free Kalman filter, so called the unscented Kalman filter(UKF), for training a fully connected RNN is presented in a state space formulation of the system. A derivative free Kalman filler learning algorithm makes the RNN have fast convergence speed and good tracking performance without the derivative computation. Through experiments of nonlinear channel equalization, performance of the RNNs with a derivative free Kalman filter teaming algorithm is evaluated.

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF