리벳이음은 응력집중 등에 의한 피로균열 발생 가능성이 높은 구조특성을 가지므로 구조물의 안전성 확보를 위하여 비파괴 평가 방법에 의하여 리벳홀 주위 균열에 대한 평가가 요구되고 있다. 유도 초음파의 일종인 Lamb파는 판형상의 구조물의 비파괴 평가에 적합하며, 신경회로망은 비파괴 평가 기술에서 결합의 크기 및 종류 인식에 관하여 가장 효율적인 기법으로 많은 연구자들에 의해 적용되어 왔다. 본 연구에서는 항공기의 스킨재료로 적용되는 A12024-T3판재에 대하여 유도초음파의 일종인 판파를 적용하여 리벳홀 주위 균열 신호를 검출하였으며, 또한 리벳홀 주위 균열의 크기 평가를 위하여 백프로퍼게이션 알고리즘을 적용한 신경회로망을 적용하였다. 이때, 초음파 트랜스듀서와 시험편 사이의 불균일 접촉에 의한 오차를 줄이기 위하여 초음파 파형에서 시간 및 주파수 성분의 특성을 추출하여 신경회로망에 적용하였다. 그리고 이들 판파신호에서 추출한 시간 및 주파수 성분의 특성은 균열 크기 결정에 유용하게 적용될 수 있음을 증명하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권9호
/
pp.4367-4385
/
2016
With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.
This paper is proposed artificial neural network(ANN) rotor resistance estimation of induction motor drive controlled by multi-adaptive fuzzy learning controller(AFLC). A simple double layer feedforward ANN trained by the back-propagation technique is employed in the rotor resistance identification. In this estimator, double models of the state variable estimations are used; one provides the actual induction motor output states and the other gives the ANN model output states. The total error between the desired and actual state variables is then back propagated to adjust the weights of the ANN model, so that the output of this model tracks the actual output. When the training is completed, the weights of the ANN correspond to the parameters in the actual motor. The estimation and control performance of ANN and multi-AFLC is evaluated by analysis for various operating conditions. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.
필름 스캐너는 기존의 광학 필름으로부터 고해상도와 고화질의 디지털 영상을 취득할 수 있는 입력 장치로, 최근 인쇄 및 편집 전문가들의 사용이 증대되고 있다. 그러나 광원 및 센서의 비선형적 특성으로 인해 원 필름 영상의 컬러와 스캔된 영상의 컬러가 일치하지 않는 문제가 발생한다. 따라서 필름 스캐너에서는 스캔된 디지털 영상에 대한 색 보정이 필수적이다. 본 논문에서는 스캔된 RGB 색공간의 데이터를 L$^{*}$ /a$^{*}$ /b$^{*}$ 색 공간으로 변환한 후 역전파 신경회로망을 이용하여 색 보정한다. 또한 TMS320C32 DSP 칩과 고해상도 라인 센서를 사용하여 R, G, B 각각 12 비트의 색분해도와 2400 dpi 급의 해상도를 갖는 필름 스캐너로 직접 구현하여 색 보정의 검증을 하였으며, 역 전파 신경망에 적용한 결과 평균 색 보정률이 79.8%로, 기존의 다항회귀법보다 43.5% 성능이 개선된 결과이다.
콘크리트와 철은 건설에서 필수적인 구조 재료이다. 그러나, 철과 달리 콘크리트는 하나의 재료가 아니라 많은 물질들로 구성된 복합재료이며, 구성 재료, 현장 환경, 그리고 기술자의 숙련도 등에 의해 많은 영향을 받는다. 그리고 유동성과 공기량 등 즉시 알 수 있는 물성도 있지만 강도나 내구성 같이 시간이 지나야 알 수 있는 특성도 존재하므로 콘크리트의 배합은 전문가의 경험에 많이 의존해 왔다. 하지만, 콘크리트도 고성능화 되는 시점에서 첨가 재료도 늘어나고 기존의 자료도 부족하기 때문에 새로운 기법이 필요한 때이다. 신경망은 복잡한 비선형 문제를 처리하는 인간의 두뇌를 모방한 모델로 패턴 인식 및 분류, 예측 등의 분야에서 많이 사용되고 있다 여기서는 그 중에서 역전파 알고리즘과 광선형 기저 함수망 모형이 사용되었다. 여덟가지 재료(물, 시멘트, 잔골재, 굵은 골재, 플라이 애쉬, 실리카 흄, 유동화제, 그리고 공기연행제)가 배합에 사용되었으며, 압축강도와 슬럼프, 공기량을 물성으로 사용하였다. 결과적으로 신경망은 고성능 콘크리트치 배합 및 물성 예측 등 활용에 유용하게 사용될 수 있음을 알 수 있었다.
통신에 의한 전송 영상은 잡음이나 번짐 또는 일그러짐 등을 항상 포함한다. 본 논문에서는 적응형 일반스텍 최적화 필터(OAGSF: optimal adaptive generalized stack filter)라는 영상복원 공간 필터를 제안하였는데, 이는 영상의 복원에서 잡음 제거율과 외곽선 정보의 보존률의 증가을 위해 신경회로맘의 역전파 학습 알고리즘의 가중치 학습 알고리즘을 기반으로 적응형 일반스택 필터(AGSF)를 최적화 시킨 것이다. 적응형 일반스택 필터는 일반스택 필터(GSF: generalized stack filter)와 적응형 다단계 메디안 필터(AMMF; adaptive multistage median filter)로 구분하고, 일반스텍 필터는 스택 필너치 기능을 보완한것이고, 적응형 다단계 메디안 필터는 메디안 필터의 외곽선 정보 보존률을 높인 것이다. 신경회로망의 역전파 학습 알고리즘에 대하여 두가지 가중치 학습 알고리즘인 최소평균절대 (LMA:Least Mean Absolute) 알고리즘과 최소평균자승(LMS: Least Mean Square) 알고리즘을 이용하여 적응형 일반스택 필터를 최적화하였다. 본 논문에서 제시한 신경회로망을 이용한 영상복원 공간필터에 대해 실험결과를 통해 제시하였다.
Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.
Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
Computers and Concrete
/
제22권2호
/
pp.249-259
/
2018
This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.
본 논문에서는 신경망 모델을 적용한 몰드변압기의 보이드 결함 크기 판별에 관한 연구를 수행하였다. PCB 기반의 로고우스키 코일형 부분방전 센서를 제작하여 부분방전 신호를 측정하였고, 보이드에 의한 부분방전 결함을 모의하기 위한 PD 전극계를 제작하였다. 또한 보이드는 원통형 모양의 알루미늄 틀을 제작하여 에폭시가 경화되는 과정에서 실린지를 삽입하고 공기를 주입하여 서로다른 직경을 가지는 4개의 시편을 제작하였다. 보이드 결함 크기 판별을 위해 부분방전 전하량, 방전 펄스 수, 위상 분포의 부분방전 특성 파라미터를 추출하여 Labview 기반의 VI (Virtual Instrument)로 역전파 알고리즘을 설계하였다. 실험 결과로부터 제작된 알고리즘은 90%이상의 판별률로 결함의 직경크기를 구분할 수 있었다. 본 연구의 결과는 현장에서 PD 측정 시 몰드변압기의 유지보수 및 절연물 교체의 근거 자료로 활용될 수 있을 것으로 판단된다.
최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.