• 제목/요약/키워드: back-propagation neural network

검색결과 1,073건 처리시간 0.031초

초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가 (Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network)

  • 최상우;이준현
    • 비파괴검사학회지
    • /
    • 제21권4호
    • /
    • pp.398-405
    • /
    • 2001
  • 리벳이음은 응력집중 등에 의한 피로균열 발생 가능성이 높은 구조특성을 가지므로 구조물의 안전성 확보를 위하여 비파괴 평가 방법에 의하여 리벳홀 주위 균열에 대한 평가가 요구되고 있다. 유도 초음파의 일종인 Lamb파는 판형상의 구조물의 비파괴 평가에 적합하며, 신경회로망은 비파괴 평가 기술에서 결합의 크기 및 종류 인식에 관하여 가장 효율적인 기법으로 많은 연구자들에 의해 적용되어 왔다. 본 연구에서는 항공기의 스킨재료로 적용되는 A12024-T3판재에 대하여 유도초음파의 일종인 판파를 적용하여 리벳홀 주위 균열 신호를 검출하였으며, 또한 리벳홀 주위 균열의 크기 평가를 위하여 백프로퍼게이션 알고리즘을 적용한 신경회로망을 적용하였다. 이때, 초음파 트랜스듀서와 시험편 사이의 불균일 접촉에 의한 오차를 줄이기 위하여 초음파 파형에서 시간 및 주파수 성분의 특성을 추출하여 신경회로망에 적용하였다. 그리고 이들 판파신호에서 추출한 시간 및 주파수 성분의 특성은 균열 크기 결정에 유용하게 적용될 수 있음을 증명하였다.

  • PDF

A Novel Scheme for detection of Parkinson’s disorder from Hand-eye Co-ordination behavior and DaTscan Images

  • Sivanesan, Ramya;Anwar, Alvia;Talwar, Abhishek;R, Menaka.;R, Karthik.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4367-4385
    • /
    • 2016
  • With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.

다중 AFLC를 이용한 유도전동기 드라이브의 ANN 회전자저항 추정 (ANN Rotor Resistance Estimation of Induction Motor Drive using Multi-AFLC)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.45-56
    • /
    • 2011
  • This paper is proposed artificial neural network(ANN) rotor resistance estimation of induction motor drive controlled by multi-adaptive fuzzy learning controller(AFLC). A simple double layer feedforward ANN trained by the back-propagation technique is employed in the rotor resistance identification. In this estimator, double models of the state variable estimations are used; one provides the actual induction motor output states and the other gives the ANN model output states. The total error between the desired and actual state variables is then back propagated to adjust the weights of the ANN model, so that the output of this model tracks the actual output. When the training is completed, the weights of the ANN correspond to the parameters in the actual motor. The estimation and control performance of ANN and multi-AFLC is evaluated by analysis for various operating conditions. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

필름 스캐너에서 역전파 신경회로망을 이용한 색 보정 (Color Correction Using Back Propagation Neural Network in Film Scanner)

  • 홍승범;백중환
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.15-22
    • /
    • 2003
  • 필름 스캐너는 기존의 광학 필름으로부터 고해상도와 고화질의 디지털 영상을 취득할 수 있는 입력 장치로, 최근 인쇄 및 편집 전문가들의 사용이 증대되고 있다. 그러나 광원 및 센서의 비선형적 특성으로 인해 원 필름 영상의 컬러와 스캔된 영상의 컬러가 일치하지 않는 문제가 발생한다. 따라서 필름 스캐너에서는 스캔된 디지털 영상에 대한 색 보정이 필수적이다. 본 논문에서는 스캔된 RGB 색공간의 데이터를 L$^{*}$ /a$^{*}$ /b$^{*}$ 색 공간으로 변환한 후 역전파 신경회로망을 이용하여 색 보정한다. 또한 TMS320C32 DSP 칩과 고해상도 라인 센서를 사용하여 R, G, B 각각 12 비트의 색분해도와 2400 dpi 급의 해상도를 갖는 필름 스캐너로 직접 구현하여 색 보정의 검증을 하였으며, 역 전파 신경망에 적용한 결과 평균 색 보정률이 79.8%로, 기존의 다항회귀법보다 43.5% 성능이 개선된 결과이다.

  • PDF

고성능 콘크리트의 활용을 위한 신경망의 적용 (Applications of Artificial Neural Networks for Using High Performance Concrete)

  • 양승일;윤영수;이승훈;김규동
    • 한국방재학회 논문집
    • /
    • 제3권4호
    • /
    • pp.119-129
    • /
    • 2003
  • 콘크리트와 철은 건설에서 필수적인 구조 재료이다. 그러나, 철과 달리 콘크리트는 하나의 재료가 아니라 많은 물질들로 구성된 복합재료이며, 구성 재료, 현장 환경, 그리고 기술자의 숙련도 등에 의해 많은 영향을 받는다. 그리고 유동성과 공기량 등 즉시 알 수 있는 물성도 있지만 강도나 내구성 같이 시간이 지나야 알 수 있는 특성도 존재하므로 콘크리트의 배합은 전문가의 경험에 많이 의존해 왔다. 하지만, 콘크리트도 고성능화 되는 시점에서 첨가 재료도 늘어나고 기존의 자료도 부족하기 때문에 새로운 기법이 필요한 때이다. 신경망은 복잡한 비선형 문제를 처리하는 인간의 두뇌를 모방한 모델로 패턴 인식 및 분류, 예측 등의 분야에서 많이 사용되고 있다 여기서는 그 중에서 역전파 알고리즘과 광선형 기저 함수망 모형이 사용되었다. 여덟가지 재료(물, 시멘트, 잔골재, 굵은 골재, 플라이 애쉬, 실리카 흄, 유동화제, 그리고 공기연행제)가 배합에 사용되었으며, 압축강도와 슬럼프, 공기량을 물성으로 사용하였다. 결과적으로 신경망은 고성능 콘크리트치 배합 및 물성 예측 등 활용에 유용하게 사용될 수 있음을 알 수 있었다.

신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현 (Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks)

  • 문병진;김광희;이배호
    • 전자공학회논문지S
    • /
    • 제36S권7호
    • /
    • pp.81-89
    • /
    • 1999
  • 통신에 의한 전송 영상은 잡음이나 번짐 또는 일그러짐 등을 항상 포함한다. 본 논문에서는 적응형 일반스텍 최적화 필터(OAGSF: optimal adaptive generalized stack filter)라는 영상복원 공간 필터를 제안하였는데, 이는 영상의 복원에서 잡음 제거율과 외곽선 정보의 보존률의 증가을 위해 신경회로맘의 역전파 학습 알고리즘의 가중치 학습 알고리즘을 기반으로 적응형 일반스택 필터(AGSF)를 최적화 시킨 것이다. 적응형 일반스택 필터는 일반스택 필터(GSF: generalized stack filter)와 적응형 다단계 메디안 필터(AMMF; adaptive multistage median filter)로 구분하고, 일반스텍 필터는 스택 필너치 기능을 보완한것이고, 적응형 다단계 메디안 필터는 메디안 필터의 외곽선 정보 보존률을 높인 것이다. 신경회로망의 역전파 학습 알고리즘에 대하여 두가지 가중치 학습 알고리즘인 최소평균절대 (LMA:Least Mean Absolute) 알고리즘과 최소평균자승(LMS: Least Mean Square) 알고리즘을 이용하여 적응형 일반스택 필터를 최적화하였다. 본 논문에서 제시한 신경회로망을 이용한 영상복원 공간필터에 대해 실험결과를 통해 제시하였다.

  • PDF

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

몰드변압기의 보이드 결함 크기 판별 (Identification of Void Diameters for Cast-Resin Transformers)

  • 정기우;김성욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.570-573
    • /
    • 2022
  • 본 논문에서는 신경망 모델을 적용한 몰드변압기의 보이드 결함 크기 판별에 관한 연구를 수행하였다. PCB 기반의 로고우스키 코일형 부분방전 센서를 제작하여 부분방전 신호를 측정하였고, 보이드에 의한 부분방전 결함을 모의하기 위한 PD 전극계를 제작하였다. 또한 보이드는 원통형 모양의 알루미늄 틀을 제작하여 에폭시가 경화되는 과정에서 실린지를 삽입하고 공기를 주입하여 서로다른 직경을 가지는 4개의 시편을 제작하였다. 보이드 결함 크기 판별을 위해 부분방전 전하량, 방전 펄스 수, 위상 분포의 부분방전 특성 파라미터를 추출하여 Labview 기반의 VI (Virtual Instrument)로 역전파 알고리즘을 설계하였다. 실험 결과로부터 제작된 알고리즘은 90%이상의 판별률로 결함의 직경크기를 구분할 수 있었다. 본 연구의 결과는 현장에서 PD 측정 시 몰드변압기의 유지보수 및 절연물 교체의 근거 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교 (Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor)

  • 강명수;뉘엔 투 낙;김용민;김철홍;김종면
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.446-460
    • /
    • 2011
  • 최근 항공 산업, 자동차 산업 등의 산업 현장에서 유도 전동기의 사용이 증대되고 있으며, 유도 전동기는 산업 현장에서 중요한 역할을 하고 있다. 따라서 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이와 같은 이유로 본 논문에서는 유도 전동기의 고장을 조기에 검출하고 진단하기 위해 에너지 (short-time energy)와 특이치 분해와 이산 코사인 변환과 특이치 분해를 이용한 특징 벡터 추출 방법을 제안하였고, 이를 역 전파 신경 회로망과 다층 서포트 벡터 머신의 입력으로 이용하여 유도 전동기의 고장을 유형별로 분류하였다. 하지만 본 논문에서는 역 전파 신경 회로망과 다층 서포트 벡터 머신을 분류기로 사용함에 있어 역 전파 신경 회로망은 신경망을 구성하는 입력 뉴런 수, 은닉 뉴런 수, 학습 알고리즘에 의해 분류 성능이 달라지며, 다층 서포트 벡터 머신은 커널 함수로 사용한 가우시안 방사 기저 함수의 표준 편차 값에 따라 분류 성능이 달라지는 점을 고려하여 여러 가지 조건하에서의 실험을 통해 높은 분류 성능을 보이는 설정 방법을 제시하였다.