• 제목/요약/키워드: back-propagation neural network

검색결과 1,073건 처리시간 0.029초

신경회로망을 이용한 SVC 계통의 안정화에 관한 연구 (A Study on the SVC System Stabilization Using a Neural Network)

  • 정형환;허동렬;김상효
    • 조명전기설비학회논문지
    • /
    • 제14권3호
    • /
    • pp.49-58
    • /
    • 2000
  • 본 논문에서는 FACTS(Flexible AC Transnission System)로 분류되는 여라 기기중 기존의 전압제어 및 무효 전력보상기들이 가지고 있는 바속응성과 불연속성 문제를 해결해줄 수 있는 정지형 무효전력 보상가(Static Var Compensator : SVC)를 포함한 전력계통에 신경회로망 제어기를 적용하여 안정화에 관하여 연구하였다. 제안된 신경회로망 제어기는 오차와 오차변화량을 입력하는 오차역전과 학습 알고리즘을 사용하고, 학습시간올 단축하기 위해 모멘텀 방법을 사용하였다. 제안된 방법의 강인섬을 입증하기 위해 중부하시 및 정상부하시에 초기 전력을 변동시킨 경우와 초기에 회천자각을 변동시킨 경우에 대하여 시스렘의 회전자각, 각속도 편차 특성 및 단 자전압의 동특성을 고찰하여 다른 시스템보다 응답특성이 우수합을 보였다.

  • PDF

오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구 (Front Classification using Back Propagation Algorithm)

  • 정민철
    • 지능정보연구
    • /
    • 제10권2호
    • /
    • pp.65-77
    • /
    • 2004
  • 본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 어센더(ascender), 디센더(descender)와 세리프(serif)가 사용된다. 입력 단어로부터 어센더(ascender), 디센더(descender)와 세리프(serif)가 추출되어 경사도 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 2가지 폰트 스타일, 3가지 폰트 그룹, 7가지 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다. 나아가, 특정 폰트에 따른 Mono-Font 문자 분할기와 Mono-Font문자 인식기로 구성되는 OCR시스템을 구성할 수 있는 것을 가능하게 한다. 실험 결과는 평균 95.4 퍼센트의 높은 폰트 분류율을 보였다. 본 논문에서 7가지 폰트분류를 위해 제안된 방법은 그 외 다른 폰류 분류에도 적용될 수 있다.

  • PDF

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.

멀티미디어 응용을 위한 얼굴 인식시스템 (Face Recognition System for Multimedia Application)

  • 박상규;성현경;한영환
    • 전기전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.152-160
    • /
    • 2002
  • 본 논문에서는 멀티미디어 환경을 위한 얼굴 인식 시스템을 구현하였다. 본 얼굴 인식 시스템에서는 얼굴 영역을 선정하고 출력하는 처리시간의 단축과 인식률 향상을 위한 설계에 중점을 두었다. 전형적인 RGB 색상체계를 변형 없이 사용함으로써 색상체계 변환에 필요한 시간을 감소시켰으며, 얼굴 특성을 이용한 알고리즘과 신경망 기법을 활용하여 인식률을 향상시켰다. 본 시스템은 입력된 영상을 모자이크화 시킨 후 모자이크 블록의 색상 분석을 통하여 얼굴 색상 후보 블록을 선정하고, 얼굴이 가지는 특성을 활용하여 잘못 검색된 얼굴 색상 후보 블록을 제거한다 잘못 검색된 얼굴 색상 후보 블록이 제거된 모자이크 블록 영역에서 신경망의 입력으로 사용될 4가지 특성 값을 산출하여 오류 역전파 학습과정을 거친 신경망에서 처리한 후 그 출력 값을 가지고 얼굴 영역의 진위 여부를 판단하게 된다. 본 논문에서 구현된 시스템은 복수의 인원이 포함된 10장의 입력영상을 사용하여 실험한 결과 0.1초미만의 처리시간 내에 90%의 얼굴 인식률을 보여주었다. 이 결과는 멀티미디어 동영상의 응용을 위한 얼굴인식 시스템으로 충분히 이용될 수 있을 것이다.

  • PDF

블록 분류와 MLP를 이용한 블록 부호화 영상에서의 적응적 블록화 현상 제거 (Adaptive Blocking Artifacts Reduction in Block-Coded Images Using Block Classification and MLP)

  • 권기구;김병주;이석환;이종원;권성근;이건일
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.399-407
    • /
    • 2002
  • 본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구 (A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment)

  • 김동식;채영수;김영수;김현동;김선형
    • 한국재난정보학회 논문집
    • /
    • 제3권1호
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF

인지적 정신과제 판정을 위한 EEG해석 (EEG Analysis for Cognitive Mental Tasks Decision)

  • 김민수;서희돈
    • 센서학회지
    • /
    • 제12권6호
    • /
    • pp.289-297
    • /
    • 2003
  • 본 논문에서는 정신적 과제수행 동안 EEG 뇌파의 정확한 분류방법에 관하여 기술한다. 피험자는 실험 task에서 시각적 자극에 대한 반응, 문제의 해석, 손동작 제어와 키 선택을 수행한다. 선택시간을 감지하기 위하여 측정한 뇌파로부터 $\alpha$, $\beta$, $\theta$, $\gamma$를 분리하고 4가지의 특징들을 해석한파. 이 특징들을 분석하여 각 피험자별로 공통적인 특징플로 구성된 일반 규칙을 설정한다. 본 시스템의 신경망은 1개의 은닉층을 갖는 3층의 피드포워드 신경망 구조를 가지며 학습에는 역전파 학습 알고리즘을 이용하였다. 4명의 피험자를 대상으로 설정한 알고리즘들을 적용하여 평균 87% 분류 성공률을 보였다. 본 논문에서 제안한 방법은 인지적인 정신과제 판별을 위한 방법들과 결합하여 BCI 기술을 위한 기반 기술로 활용될 수 있다.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.