Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to get it practically on considering various geography and geotechnical condition. So construction management of information concept is required to manage immediately on the field condition because it is very time-consuming to establish the countermeasure of underground reinforcement and the pattern change of Bo. Therefore, when construction is on tunnel area, examination of accurate safety and prediction of behavior is performed to overcomes the limit of predicting behavior by using Artificial Neural Network(ANN) in this study. Firstly, the field data was secured. Secondly, suitable structure was made on multi-layer perceptrons among the ANN. Thirdly, learning algorithm-propagated applies to ANN. The data for the learn of field application using ANN was used by considering impact factors, which influenced the behavior of tunnel, and performing credibility analysis. crown displacement, spring displacement, subsurfacement, and rock bolt axial force are predicted at the tunnel construction and on-site application was confirmed by using ANN from analyzing and comparing with measurement value of on-site. In this study, the data from Seoul Highway $\bigcirc\bigcirc$ tunnel section was applied to the ANN Theory, and the analysis on the investigate value and the reasoning for the value associated with field application was performed.
Outdoor mobile robots are faced with various terrain types having different characteristics. To run safely and carry out the mission, mobile robot should recognize terrain types, physical and geometric characteristics and so on. It is essential to control appropriate motion for each terrain characteristics. One way to determine the terrain types is to use non-contact sensor data such as vision and laser sensor. Another way is to use contact sensor data such as slope of body, vibration and current of motor that are reaction data from the ground to the tire. In this paper, we presented experimental results on terrain classification using contact sensor data. We made a mobile robot for collecting contact sensor data and collected data from four terrains we chose for experimental terrains. Through analysis of the collecting data, we suggested a new method of terrain feature extraction considering physical characteristics and confirmed that the proposed method can classify the four terrains that we chose for experimental terrains. We can also be confirmed that terrain feature extraction method using Fast Fourier Transform (FFT) typically used in previous studies and the proposed method have similar classification performance through back propagation learning algorithm. However, both methods differ in the amount of data including terrain feature information. So we defined an index determined by the amount of terrain feature information and classification error rate. And the index can evaluate classification efficiency. We compared the results of each method through the index. The comparison showed that our method is more efficient than the existing method.
본 연구는 도시토지이용의 적합성분석을 실시하는데 있어 GSIS와 인공신경망의 유기적인 결합을 시도해 보았다. 인공신경망은 학습이라는 과정을 통해 신경망 노드(node)간의 연결강도를 합리적으로 결정할 수 있는 이점이 있다. 이러한 점에서 공간분석에서 요구되는 인자간의 경중률과 신경망의 연결강도는 대체가 가능하리라 판단된다. 본 연구를 수행하기 위해 두 종류의 신경망을 구성하였다. 1차 신경망은 토지이용별 적합성 분석에 적용했으며, 2차 신경망은 최적의 토지이용패턴을 분석하기 위해 구성하였다 이들 신경망은 C++로 작성된 프로그램에 의해 구현된 최급강하법에 의한 역전파 알고리즘에 의해 학습을 실시하였으며, 활성화 함수는 시그모이드 함수를 사용하였다. 분석결과는 현행 용도지역제에서 주거, 상업, 공업, 녹지에 대한 토지이용 적합도면과 4가지 유형의 토지이용에 대한 대상지역의 최적토지이용패턴을 제시한 도면으로서 Arc/Info의 Grid 형식으로 작성하였다. 또한 토지이용별 적합도면상에 나타난 적합지역과 최적토지이용패턴은 위치적인 면과 공간 구성에 있어 실제의 도시토지이용계획의 이론적인 개념에 매우 합치되는 분포형태를 보였다.
The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.
본 논문에서는 PID 제어기 응답을 보상하기위해 자기구성 신경망 보상기를 추가한 제어기를 제안한다. 기존의 PID 제어기는 제어기 설계가 간단하나 계수값을 설정하는데 많은 시행착오가 필요하다. 그리고, 신경망 제어 방식은 여러 파라미터들을 설계자의 임의에 따라 결정함으로써 최적의 구조를 갖지 못하는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기위해 역전파 알고리즘을 기본으로 하여 은닉계층 노드의 활성화 함수로 가우시안 포텐셜함수를 사용하는 자기구성 신경망을 사용해, PID 제어기의 출력을 보상하도록 하였다. 자기구성 신경망은 학습을 진행함에 따라 가우시안 함수의 위치와 모양, 갯수가 자동으로 조정 되도록 하였다. 자기구성 신경망 보상기를 추가한 PID 제어기의 성능을 확인하기 위해서 2차 플랜트에 적용하여 모의 실험하였으며 DSP 프로세서를 사용하여 제어기를 구현한 후 유압 서보시스템의 속도 제어에 적용하여 실험결과를 관찰하였다.
최근 시각 장애인을 위한 인공망막 모델 구현에 관한 연구 중 시피질 자극기 기술은 시각 자극 전달의 중간 단계를 생략하고 직접 뇌세포를 자극하는 것이다. 본 논문에서는 망막에서 시각 피질로 시각정보를 전달할 때 발생하는 시각 피질의 특성, 즉 방향성에 대한 반응 특성을 특징 데이터로 구성하여 인식함으로써 인간 시각 정보 처리와 유사한 영상 추출 및 인식 모델을 제안한다. 제안된 방법은 영상의 특징을 추출 한 후 Delta-bar-delta 기반 오류 역전파 알고리즘을 적용하여 영상의 특징들을 인식한다. 제시된 방법의 성능을 분석하기 위하여 다양한 숫자 패턴들을 대상으로 실험한 결과, 제안된 망막 세포로부터 전달된 정보를 방향성에 대한 민감성을 고려하여 영상의 특성을 추출하여 인식하는 모델이 기존의 영상 추출 및 인식 모델보다 인식률에 있어서는 별 차이가 없지만 다양한 실험에서 확인할 수 있듯이 인간 시각과 같이 인식 성능이 민감하지 않는 것을 알 수 있었다.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
지금껏 발표된 많은 연구 결과에 의하면 신경망 시스템의 일반화 정도(정확도) 는 통계적 모델과의 비교 평가에서 그 일반화 정도가 그들과 버금가거나 우수하다는 평가를 받고 있다. 그러나, 이러한 신경망 시스템의 우수한 예측 결과는 불량 데이타 (noisy data)가 거의 없는 건전한 데이타, 혹은 일정량의 불량 데이타를 제어할 수 있을 만큼 충분한 양의 데이타로 신경망을 학습시켰을 경우에만 얻을 수가 있었다. 실제 문제-특히, 경제, 경영상의 문제-를 풀기 위하여 모아진 실 데이타는 신경만 시 스템이 만족할 만한 예측 결과를 보일 수 있을 정도의 건전한 데이타가 못되는 것이 현실이다. 따라서, 본 연구에서는 일정량의 불량 데이타를 포함하고 있는 훈련 데이타 를 통해 신경만을 훈련시킬 경우 신경망 시스템의 일반화 정도를 높일 수 있는 방법 에 대하여 논하였다. 본 연구의 관찰된 실험 결과에 의하면 신경망 시스템의 일반화 정도를 높이기 위해 훈련 데이타에서 같은 입력값을 갖는데도 불구하고 서로 상반되 는 출력값을 갖는 불량 데이타들을 골라내어 신경망 시스템을 훈련시키는 방법을 제 안하였다. 아울러, 두개의 서로 상반된 결과값을 갖는 불량 데이타로 신경만을 훈련 시켰을 경우 두 결과값의 평균값에 의해 신경망의 가중치(weight)조정이 된다는 이전 의 연구결과[25]도 입증되었다. 또한, 본고에서는 현재 진행중에 있는 신경망을 이 용한 신용 평가 시스템 개발에 관한 중간 결과도 기술되어 있다.
온도프리스트레싱 공법은 강합성거더교 또는 강구조물에 인위적인 온도경사를 가하여 프리스트레싱력을 도입하기 위해 개발된 공법으로, 연속 강합성거더교에 적용할 경우 부모멘트 발생지점인 연속지점부 부근의 바닥판에 프리스트레스를 도입함으로써 콘크리트 바닥판의 인장균열을 억제하는 한편, 교축방향 보강철근 사용량 및 강거더 단면을 감소시킬 수 있어 경제성과 시공성의 향상이 가능한 공법이다. 이전의 연구에서 가열구간을 설정하기 위해 사용한 시행오차법은 비효율적인 것으로 온도프리스트레싱 공법을 적용한 설계가 효율적으로 이루어지기 위해서는 보다 합리적인 적정 가열구간의 설정기법이 필요하다. 본 연구에서는 이러한 문제점을 개선하기 위하여 패턴인식, 최적화, 진단 및 예측 등을 수행하는데 많이 사용되고 있는 인공신경망 이론을 적용하여 온도프리스트레싱 공법을 적용한 연속 강합성거더교의 가열구간을 효과적이고 경제적으로 설정하는 기법을 제안하고자 한다. 인공신경망 이론을 학습시키기 위한 학습알고리즘으로는 일반적으로 널리 사용되는 오차역전파 알고리즘을 사용하였으며, 이를 이용하여 2경간 및 3경간 연속 강합성거더교의 가열구간을 예측하고 유한요소해석과의 비교를 통하여 학습알고리즘의 특성 및 예측의 정확도를 분석하였다.
본 논문에서는, HCM 클러스러팅 방법과 유전자 알고리즘을 이용하여 다중 FNN 모델을 동정하고 최적화 한다. 제안된 다중 FNN은 Yamakawa의 FNN을 기본으로 하며, 퍼지 추론 방법으로 간략 추론을, 학습으로는 오류 역전파 알고리즘을 사용한다. 다중 FNN 모델의 구조와 파라미터를 동정하기 위해 HCM 클러스터링과 유전자 알고리즘을 사용한다. 여기서, 시스템 모델링을 위해 데이터 전처리 기능을 수행하는 HCM클러스터링 방법은 I/O 프로세서 공정 데이터를 이용하여 입출력 공간분할에 의한 다중 FNN 구조를 결정하기 위해 사용된다. 또한 유전자 알고리즘을 사용하여 멤버쉽함수의 정점, 학습율, 모멘텀 계수와 같은 다중 FNN 모델의 파라미터들을 동조한다. 모델의 근사화와 일반화 능력 사이에 합히적 균형을 얻기 위해 하중계수를 가진 합성 성능지수를 사용한다. 이 합성 성능지수는 근사화 및 예측 능력사이의 상호 균형과 의존성을 고려한 하중계수를 가진 합성 목적함수를 의미한다. 데이터 개수, 비선형성의 정도에 의존하는 이 합성 목적함수의 하중계수의 선택, 조절을 통하여 최적의 다중 FNN 모델을 설계하는 것이 유용하고 효과적임을 보인다. 제안된 모델의 성능 평가를 위하여 가스로 공정의 시계열 데이터와 비선형 함수의 수치 데이터를 사용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.