As an effective methods of plasma heating, neutral beam injection (NBI) systems based on negative hydrogen ion sources will be utilized in future magnetic-confinement nuclear fusion experiments. Because of the collisions between the fast negative ions and the neutral background gas, the positive ions are inevitable created in the acceleration region in the negative NBI system. These positive ions are accelerated back into the ion source and become high energy backstreaming ions. In order to explore the characters of backstreaming ions, the track and power deposition of backstreaming H+ beam is estimated using the experimental and simulation methods at NNBI test facility. Results show that the flux of backstreaming positive ions is 1.93 % of that of negative ion extraction from ion source, and the magnet filed in the beam source has an effect on the backstreaming positive ions propagation.
본 연구는 술 전 교정치료 전 치아 이동 예측치(initial STO)와 술 전 교정치료 후 실측치에 바탕을 둔 STO (final STO)를 비교하고자 시행되었다. 부산대학교병원 치과교정과에 내원하여 교정 및 악교정수술 복합치료를 시행 받은 환자 중 하악만 수술한 환자 40명을 선정하여 상악 제1소구치 발치 여부에 따라 두 그룹(발치 그룹 20명, 비발치그룹 20명)으로 분류하였다. 술 전 교정치료 전의 initial STO, 술 전 교정치료 후의 final STO를 작성하여 각 계측치를 수평, 수직 기준선에 대해 거리를 측정하여 비교하였다. 발치 그룹의 두 STO 비교 시 수직적으로 상악 중절치 절단연과 치근단, 상악 제1대구치 협측교두에서, 수평적으로 상악 중절치 절단연, 상악 제1대구치 근심협측교두, 하악 중절치 치근단, 하악 제1대구치 근심면과 근심협측교두에서 차이를 보였으며 비발치 그룹의 경우는 수직적으로 하악 중절치 치근단, 수평적으로 상악 중절치 절단연, 하악 중절치 절단연과 치근단, 하악 제1대구치 근심면에서 차이를 보였다. 두 STO의 차이와 initial STO 수립에 영향을 미칠 수 있는 여러 진단 요소와의 상관성 평가 시 상악 치열궁 공간 부족량이 상악 전치의 수평, 수직 및 제1대구치의 수평 위치 예측에 유의한 상관성을 가졌으며 두 그룹 모두 하악 전치 치축 각도와 하악 치열궁 공간 부족량이 하악 전치의 수평 위치 예측에 유의한 상관성을 보였다. Initial STO 작성과 술 전 교정 단계에서 이를 고려하여 진행한다면 좀 더 효율적인 치료 계획 수립 및 전체적인 치료 기간을 줄이는 것에도 도움이 될 것이라 생각한다.
본 논문에서는 모바일 기기 사용자들의 다음 방문 장소를 효율적으로 예측할 수 있는 맵리듀스 기반의 이동 패턴 마이닝 시스템을 소개한다. 이 시스템은 대용량의 사용자 이동 궤적 데이터 집합으로부터 은닉 마코프 모델로 표현되는 각 사용자의 이동 패턴을 학습해내고, 이 모델을 현재 이동 궤적에 적용함으로써 다음 방문 장소를 예측한다. 본 시스템은 사용자별 이동 패턴 모델을 학습하는 후단부와 실시간으로 다음 방문 장소를 예측하는 전단부 등 크게 두 부분으로 구성된다. 이 중에서 후단부는 주요 장소 추출, 이동 궤적 변환, 이동 패턴 모델 학습 등 총 3개의 맵리듀스 작업 모듈들로 구성된다. 이에 반해, 본 시스템의 전단부는 이동 경로 후보군 생성, 다음 장소 예측 등 총 2개의 작업 모듈들로 구성된다. 그리고 본 시스템을 구성하는 각 작업 모듈의 맵과 리듀스 함수들은 하둡 인프라를 효과적으로 활용하여 병렬 처리를 극대화할 수 있도록 설계하였다. 대용량의 공개 벤치마크 데이터 집합인 GeoLife를 이용하여 본 논문에서 소개한 시스템의 성능을 분석하기 위한 실험들을 수행하였고, 실험 결과를 통해 본 시스템의 높은 성능을 확인할 수 있었다.
k-casein은 유단백질 분획으로 GMP를 포함하고있으떠 GMP는 sialic acid를 포함하고 있으므로 k-casein index로 sialic acid 가 사용될 수 있다. 탈지분유 분리 단백질 용해도는 칼슘카페인 보다 일반적으로 낮으므로 용매처리시 야기되는 k-casein의 손실과 저용해도와의 관계를 규명하고자 하였다. 특히 용매처리시 주요 stabilizing fraction k-casein의 손실 혹은 손상을 고려해야만 한다. 용매처리시 sialic acid 는 제1차 추출용매에 16.5%, 제2차 추출용매에 4.0%손실되어 전체 20.5%가 용매처리시 손실되었다. 또 사용한 메탄올의 농도가 증가할수록 sialic acid손실이 감소하여 sialic acid 손실은 메탄을분획보다 물분획에따라 좌우된 것 같다. 따라서 sialic acid를 함유한 분말 extracted solid의 feed back 실험 결과 10%첨 가시최대 용해도를 나타냈으며 유당은 용해도 변화에 기여하지 못하였다 결론적으로 탈지분유 단백의 저용해도 헌상은 용매처리시 k-casein의 가용성 물질 손실에도 일부 기인한 것으로 사료된다.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
스마트폰의 전면 및 후면 카메라를 이용하여 동시에 획득한 전경 이미지와 배경 이미지에서, 전경 이미지의 일부분인 전경 물체를 추출하여 배경 이미지에 합성하는 방법을 제시한다. 최근의 고사양 스마트폰은 대개 두 개의 카메라를 가지고 있고, 사진을 촬영하는 과정에서 미리보기 화면을 제공한다. 전면 카메라로부터 전경 이미지를 획득하는 과정에서 미리보기 화면의 비디오에 대한 옵티컬 플로우를 이용하여 전경 물체를 추출한다. 추출된 전경 물체와 배경 화면을 단순히 합성한 후, 전경 물체와 배경화면의 경계에서 가중치 경계 블렌딩을 이용하여 시각적으로 부드러운 경계를 갖는 합성을 수행한다. 화소 수준의 조밀한 옵티컬 플로우의 계산은 고사양의 스마트폰에서도 상당히 느리기 때문에, 전경 물체 추출을 위한 마스크의 계산을 저해상도에서 수행하여 계산시간을 크게 절약할 수 있다. 실험적 결과에 의하면 제안하는 방법은 더 적은 계산 시간을 사용하며, 널리 사용되는 Poisson 이미지 합성 방법에 비하여 시각적으로 더 우수한 결과를 얻을 수 있다. 제안하는 방법은 Poisson 이미지 합성 방법에서 자주 관찰되는 색 번짐 결점을 가중치 경계 블렌딩을 이용하여 제한적인 수준에서 극복할 수 있다.
본 논문에서는 local min/max 연산을 이용한 필기체 숫자의 방향특징 추출 기법을 제안한다. 숫자의 방향특징은 숫자를 이루는 선에서 수평, 수직 및 두 대각방향인 4개 방향의 선들로 구성된 방향선분 영상으로부터 구해진다. Kirsch 마스크를 사용하는 기존의 방향특징 추출기법은 에지형태인 두 겹으로 된 방향선분 영상을 생성하는데 반해 본 논문에서 제시하는 방법은 방향성 수축연산을 사용하여 한 겹으로 된 방향선분 영상을 생성한다. 본 방향성 수축연산을 숫자영상에 적용하기 위해서는 먼저 세선화, 영상 팽창 등의 전처리가 필요하지만 이 방법은 숫자를 이루는 선 자체와 더욱 유사한 형태를 갖는 방향선분을 제공한다. 우리가 구하고자 하는 [$4{\times}4$] 크기인 4개의 방향특징은 4개의 방향선분 영상으로부터 조닝방법을 통해 구해진다. 보다 높은 필기체 숫자인식을 얻기 위해, 본 연구에서는 우리가 제안한 방향특징에 기존의 Kirsch 방향특징과 오목특징을 결합한 다중특징을 사용하였다. 본 숫자 특징에 의한 인식률을 테스트를 위해 오류역전파 알고리즘으로 학습되는 다층퍼셉트론 신경회로망을 인식기로 사용하였으며, Concordia 대학의 CENPARMI 숫자 데이터베이스를 사용하여 실험한 결과 98.35%의 인식률을 얻을 수 있었다.
The purpose of this study was to investigate the protective effect on oxidative stress induced PC12 cells, and volatile flavor composition of essential oils derived from medicinal plant seeds- Gossypium hirsutum L. (G. hirsutum), Coix lachryma-jobi (C. lachryma-jobi) and Oenothera biennis (O. biennis). The essential oils were obtained by the solvent (hexane) extraction method from the seeds. The essential oils of the seeds were analyzed by the solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). The major compounds of G. hirsutum, C. lachryma-jobi and O. biennis were cyclonexanol (16.65%), β-asarone (14.29%) and ylangene (50.01%). The DPPH radical scavenging activity (IC50) was the highest value of 8.52 mg/mL in the O. biennis. Additionally, IC50 values of G. hirsutum and C. lachryma-jobi were 26.76 mg/mL and 36.81 mg/mL. For the oxidative stress on PC12 cells, we treated with hydrogen peroxide (H2O2). The pretreatment of oxidative stress induced PC12 cells with all the essential oils preserved or increased their cell viability and G. hirsutum and O. biennis attenuated the ROS generation (by 68.75% and 56.25% vs. H2O2 control). The results of this study suggest that the essential oils derived from medicinal plant seeds could be used as valuable back data as a natural essential oil material to prevent neurodegenerative diseases by protecting neuro-cells.
바르지 못한 앉은 자세는 다양한 질병과 신체 변형을 유발한다. 하지만 오랜 시간동안 바른 앉은 자세를 유지하는 것은 쉬운 일이 아니다. 이러한 이유 때문에 그동안 자동으로 바른 앉은 자세를 유도하기 위한 다양한 시스템이 제안되어왔다. 이전에 제안되었던 앉은 자세 판별 및 바른 앉은 자세 유도 시스템은 영상 처리를 이용한 방법, 의자에 압력센서를 달아 측정하는 방법, IMU(Internal Measurement Unit)를 이용한 방법이 있었다. 이 중 IMU를 이용한 측정 방법은 하드웨어 구성이 간단하고, 공간, 광량 등의 환경적 제한이 적어 측정에 있어서 용이한 이점이 있었다. 본 논문에서는 하나의 IMU를 이용하여 적은 데이터로 효율적으로 앉은 자세를 분류하는 방법을 연구하였다. 특징추출 기법을 이용하여 데이터 분류에 기여도가 낮은 데이터를 제거하였으며, 머신러닝 기법을 이용하여 앉은 자세 분류에 적합한 센서 위치를 찾고, 여러 개의 머신러닝 모델 중 가장 분류 정확도가 높은 머신러닝 모델을 선정하였다. 특징추출 기법은 PCA(Principal Component Analysis)를 사용하였고, 머신러닝 모델은 SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model)모델을 사용하였다. 연구결과 데이터 분류율이 높게나온 뒷목이 적합한 센서 위치가 되었으며, 센서 데이터 중 Yaw데이터는 분류 기여도가 가장 낮은 데이터임을 PCA 특징추출 기법을 이용하여 확인하고, 제거하여도 분류율에 영향이 매우 작음을 확인하였다. 적합 머신러닝 모델은 SVM, KNN 모델로 다른 모델에 비하여 분류율이 높게 나오는 것을 확인할 수 있었다.
치과치료를 위하여 마취를 시행할 때 아동들의 주사기나 주사바늘에 대한 불편감을 감소시키기 위한 여러 방법들이 있다. 도포마취제의 사용이 한 가지 방법이다. 도포마취는 많은 임상과정, 즉 주사침 자입부위, 간단한 유치발치, 구토반응이 심한 환자에서 치과용 구내 방사선 촬영시, 인상채득 전 구토반응의 감소 목적 등으로 사용되어 왔다. 또한 소아에서 치면열구전색술과 예방심미수복술시 치아격리를 위한 러버댐 clamp의 장착은 불편감을 유발할 수 있는데, 도포마취는 이런 목적으로 러버댐 장착시 도움이 된다. 모든 구강내 도포마취제는 점막에 동등한 효과가 있다고 제안되었으나, 1980년대 개발되어 피부의 표면마취에 사용되는 EMLA(acronym for eutectic mixture of local anaesthetics)가 기존의 도포마취제보다 부착치은에 사용시 더 효과가 있다고 보고되고 있다. 본 증례에서는 침윤마취가 필요한 몇 증례에서 EMLA cream을 이용하여 국소마취를 하기 전단계, 유치 발거시, clamp 장착시, 기성관 수복 등에서 동통을 감소시킴으로써 환아의 치과 치료에 대한 불안감을 감소시키는데 매우 효과적이었기에 보고하는 바이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.