The differences of STO between before and after presurgical orthodontics in skeletal Class III malocclusions

골격성 III급 부정교합자에서 술 전 교정치료 전과 후의 수술계획의 차이

  • Lee, Eun-Ju (Department of Orthodontics, Pusan National University Hospital) ;
  • Son, Woo-Sung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Park, Soo-Byung (Department of Orthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Seong-Sik (Department of Orthodontics, School of Dentistry, Pusan National University)
  • 이은주 (부산대학교병원 치과교정과) ;
  • 손우성 (부산대학교 치과대학 교정학교실) ;
  • 박수병 (부산대학교 치과대학 교정학교실) ;
  • 김성식 (부산대학교 치과대학 교정학교실)
  • Published : 2008.06.30

Abstract

Objective: To evaluate the discrepancies between initial STO and final STO in Class III malocclusions and to find which factors are related to the discrepancies. Methods: Twenty patients were selected for the extraction group and 20 patients for the non-extraction group. They were diagnosed as skeletal Class III and received presurgical orthodontic treatment and mandibular set-back surgery at Pusan National University Hospital. The lateral cephalograms were analyzed for initial STO (T1s) at pretreatment and final STO (T2s) after presurgical orthodontic treatment, and specified the landmarks 3s coordinates of the X and V axes. Results: Differences in hard tissue points (T1s-T2s) in the X coordinates of upper central incisor edge, upper first molar mesial end surface, lower central incisor apex, lower first molar mesial end surface and mesio-buccal cusp and Y coordinates of upper central incisor edge, upper central incisor apex, upper first molar mesio-buccal cusp were statistically significant in the extraction group. Differences in hard tissue points (T1s-T2s) in the X coordinates of upper central incisor edge, lower central incisor apex, lower first molar mesial end surface and Y coordinates of lower central incisor apex were statistically significant in the non-extraction group. In the extraction group, the upper arch length discrepancy (UALD) had a statistically significant effect on maxillary incisor and first molar estimation. Lower arch length discrepancy and IMPA had statistically significant effects on mandibular incisor estimation in both groups. Conclusions: Discrepancies between initial STO and final STO and factors contributing to the accuracy of initial STO must be considered in treatment planning of Class III surgical patients to increase the accuracy of prediction.

본 연구는 술 전 교정치료 전 치아 이동 예측치(initial STO)와 술 전 교정치료 후 실측치에 바탕을 둔 STO (final STO)를 비교하고자 시행되었다. 부산대학교병원 치과교정과에 내원하여 교정 및 악교정수술 복합치료를 시행 받은 환자 중 하악만 수술한 환자 40명을 선정하여 상악 제1소구치 발치 여부에 따라 두 그룹(발치 그룹 20명, 비발치그룹 20명)으로 분류하였다. 술 전 교정치료 전의 initial STO, 술 전 교정치료 후의 final STO를 작성하여 각 계측치를 수평, 수직 기준선에 대해 거리를 측정하여 비교하였다. 발치 그룹의 두 STO 비교 시 수직적으로 상악 중절치 절단연과 치근단, 상악 제1대구치 협측교두에서, 수평적으로 상악 중절치 절단연, 상악 제1대구치 근심협측교두, 하악 중절치 치근단, 하악 제1대구치 근심면과 근심협측교두에서 차이를 보였으며 비발치 그룹의 경우는 수직적으로 하악 중절치 치근단, 수평적으로 상악 중절치 절단연, 하악 중절치 절단연과 치근단, 하악 제1대구치 근심면에서 차이를 보였다. 두 STO의 차이와 initial STO 수립에 영향을 미칠 수 있는 여러 진단 요소와의 상관성 평가 시 상악 치열궁 공간 부족량이 상악 전치의 수평, 수직 및 제1대구치의 수평 위치 예측에 유의한 상관성을 가졌으며 두 그룹 모두 하악 전치 치축 각도와 하악 치열궁 공간 부족량이 하악 전치의 수평 위치 예측에 유의한 상관성을 보였다. Initial STO 작성과 술 전 교정 단계에서 이를 고려하여 진행한다면 좀 더 효율적인 치료 계획 수립 및 전체적인 치료 기간을 줄이는 것에도 도움이 될 것이라 생각한다.

Keywords

References

  1. Vig KD, Ellis E 3rd. Diagnosis and treatment planning for the surgical-orthodontic patient. Dent Clin North Am 1990;34: 361-84
  2. Tompach PC, Wheeler JJ, Fridrich KL. Orthodontic considerations in orthognathic surgery. Int J Adult Orthodon Orthognath Surg 1995;10:97-107
  3. Proffit WR, White RP. Surgical orthodontic treatment. St Louis:Mosby;1991. p. 202-15
  4. Park JH, Hwang CJ. A study on the preoperative prediction values versus the postoperative actual values in Class III two jaw surgery patients. J Korean Assoc Maxillofac Plast Reconstr Surg 2003;25:238-48
  5. Choi YS, Son WS. A comparative study on the postsurgical changes between one jaw surgery and two-jaw surgery in skeletal Class III patients. Korean J Orthod 1997;27:297-313
  6. Choi YK, Suhr CH. Hard and soft tissue changes after orthognathic surgery of mandibular prognathism. Korean J Orthod 1993;23:707-24
  7. Kim JR, Kim TK, Chung IK, Yang DK, Park SB, Son WS, et al. Cephalometric analysis of postsurgical behavior of mandibular prognathism. J Korean Assoc Maxillofac Plast Reconstr Surg 1993;15:123-8
  8. Lee HS, Park YC. A cephalometric study of profile changes following orthognathic surgery in patients with mandibular prognathism. Korean J Orthod 1987;17:299-310
  9. Arnett GW, Gunson MJ. Facial planning for orthodontists and oral surgeons. Am J Orthod Dentofacial Orthop 2004;126: 290-5 https://doi.org/10.1016/j.ajodo.2004.06.006
  10. Arnett GW, Jelic JS, Kim J, Cummings DR, Beress A, Worley CM Jr, et al. Soft tissue cephalometric analysis: Diagnosis and treatment planning of dentofacial deformity. Am J Orthod Dentofacial Orthop 1999;116:239-53 https://doi.org/10.1016/S0889-5406(99)70234-9
  11. McNeill RW, Proffit WR, White RP. Cephalometric prediction for orthodontic surgery. Angle Orthod 1972;42:154-64
  12. Lines PA, Steinhauser EW. Soft tissue changes in relationship to movement of hard structures in orthognathic surgery: a preliminary report. J Oral Surg 1974;32:891-6 https://doi.org/10.1016/0030-4220(71)90175-7
  13. Robinson SW, Speidel TM, Isaacson RJ, Worms FW. Soft tissue profile change produced by reduction of mandibular prognathism. Angle Orthod 1972;42:227-35
  14. Worms FW, Isaacson RJ, Speidel TM. Surgical orthodontic treatment planning: Profile analysis and mandibular surgery. Angle Orthod 1976;46:1-25
  15. Gossett CB, Preston CB, Dunford R, Lampasso J. Prediction accuracy of computer-assisted surgical visual treatment objectives as compared with conventional visual treatment objectives. J Oral Maxillofac Surg 2005;63:609-17 https://doi.org/10.1016/j.joms.2005.01.004
  16. Eckhardt CE, Cunningham SJ. How predictable is orthognathic surgery? Eur J Orthod 2004;26:303-9 https://doi.org/10.1093/ejo/26.3.303
  17. Friede H, Kahnberg KE, Adell R, Ridell A. Accuracy of cephalometric prediction in orthognathic surgery. J Oral Maxillofac Surg 1987;45:754-60 https://doi.org/10.1016/0278-2391(87)90195-9
  18. Kim NK, Lee C, Kang SH, Park JW, Kim MJ, Chang YI. A three-dimensional analysis of soft and hard tissue changes after a mandibular setback surgery. Comput Methods Programs Biomed 2006;83:178-87 https://doi.org/10.1016/j.cmpb.2006.06.009
  19. Bryan DC, Hunt NP. Surgical accuracy in orthognathic surgery. Br J Oral Maxillofac Surg 1993;31:343-49 https://doi.org/10.1016/0266-4356(93)90187-2
  20. Mankad B, Cisneros GJ, Freeman K, Eisig SB. Prediction accuracy of soft tissue profile in orthognathic surgery. Int J Adult Orthodon Orthognath Surg 1999;14:19-26
  21. Yang WS, Baik HS. A study on the extracellular matrix in the artificially created cleft lip wound healing of rabbit fetuses. Korean J Orthod 1998;28:865-75
  22. Pospisil OA. Reliability and feasibility of prediction tracing in orthognathic surgery. J Craniomaxillofac Surg 1987;15:79-83 https://doi.org/10.1016/S1010-5182(87)80023-9
  23. Lee SJ, Hong SJ, Kim YH, Baek SH, Suhr CH. Effect of maxillary premolar extracion on transverse arch dimension in Class III surgical-orthodontic treatment. Korean J Orthod 2005;35:23-34
  24. Tweed CH. The Frankfort-mandibular incisor angle in orthodontic diagnosis, treatment planning and prognosis. Angle Orthod 1954(FMIA);24:121-69
  25. Hixon EH. Cephalometrics: A perspective. Angle Orthod 1972;42:200-11
  26. Steiner CC. The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod 1960;46: 721-35 https://doi.org/10.1016/0002-9416(60)90145-7
  27. Choi BT. Steps of preparation for orthognathic surgery. Seoul:JeeSung Publishing;2004
  28. Yang SD. Surgical treatment objectives. J Korean Dent Assoc 2007;45:404-13
  29. Hwang CJ, Moon JL. The limitation of alveolar bone remodeling during retraction of the upper anterior teeth. Korean J Orthod 2001;31:97-105
  30. Chang IH, Lee YJ, Park YG. A comparative study of soft tissue changes with mandibular one jaw surgery and double jaw surgery in Class III malocclusion. Korean J Orthod 2006;36:63-73
  31. Cho EJ, Yang WS. Soft tissue changes after double jaw surgery in skeletal Class III maloccluaion. Korean J Orthod 1996;26:1-16
  32. Wolford LM, Hilliard FW, Dugan DJ. Surgical treatment objective: a systemic approach to the prediction tracing. St. Louis: Mosby;1985. p. 54-74
  33. Kwon MJ, Baik HS, Lee WY. A study on the accuracy of profile change prediction by video imaging (Power Ceph$^{\circledR}$Ver 3.3) in Class III two jaw surgery patients. Korean J Orthod 1999;29:285-301
  34. Sinclair PM, Kilpelainen P, Phillips C, White RP Jr, Rogers L, Sarver DM. The accuracy of video imaging in orthognathic surgery. Am J Orthod Dentofacial Orthop 1995;107:177-85 https://doi.org/10.1016/S0889-5406(95)70134-6
  35. Jacobs JD, Sinclair PM. Principles of orthodontic mechanics in orthognathic surgery cases. Am J Orthod 1983;84:399-407 https://doi.org/10.1016/0002-9416(93)90003-P
  36. Kim SJ, Park SY, Woo HH, Park EJ, Kim YH, Lee SJ, et al. A study on the limit of orthodontic treatment. Korean J Orthod 2004;34:165-75
  37. Hwang CJ, Kwon HJ. A study on the preorthodotic prediction values versus the actual postorthodontic values in Class III surgery patients. Korean J Orthod 2003;33:1-9
  38. Chang JH, Lee SJ, Kim TW. Evaluation of nasolabial angle in adult patients with skeletal Class III malocclusion. Korean J Orthod 2007;37:272-82
  39. Kobayashi T, Watanabe I, Ueda K, Nakajima T. Stability of the mandible after sagittal ramus osteotomy for correction of prognathism. J Oral Maxillofac Surg 1986;44:693-7 https://doi.org/10.1016/0278-2391(86)90036-4
  40. Lee RT. The benefits of post-surgical orthodontic treatment. Br J Orthod 1994;21:265-74 https://doi.org/10.1179/bjo.21.3.265