• Title/Summary/Keyword: back-EMF constant

Search Result 60, Processing Time 0.023 seconds

DC link voltage control method in the sinusoidal current drive system for dental hand-piece PMSM (치과 핸드피스용 고속 PMSM의 정현파 구동을 위한 인버터 직류 링크전압 제어기법)

  • Jeon, Geum-Sang;Park, Jae-Seung;Park, Sang-Uk;Kim, Sang-Hee;Ahn, Hee-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a DC link voltage control method to reduce the ripple current and the switching loss in the sinusoidal current drive system for the wide-speed range PMSM. The DC link voltage of the three phase inverter in the sinusoidal current drive system is designed by the back-EMF voltage at maximum speed of the PMSM. In general, the drive systems have used the constant DC link voltage without reference to the motor speed. The current ripple causes hysteresis loss and makes noise. In addition, the switching loss on the inverter increases in proportion to the rise in the DC link voltage. In this paper, we propose the variable DC link voltage control method to reduce the current ripple in the PMSM drive system. We show reduction effect of the current repple and the switching loss through simulation results.

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Sensorless Control of PM BLDC Motor Drive Using Third Harmonic (3고조파를 이용한 PM BLDC 전동기 구동을 위한 센서리스 제어)

  • Yoon Yong-Ho;Kim Yuen-Chung;Won Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.323-330
    • /
    • 2005
  • In order to increase reliability and reduce system cost, this paper studies particularly applicable method for sensorless PM BLDCM drive system. The waveform of the motor internal voltages(or back emf) contains a fundamental and higher order frequency harmonics. Therefore the third harmonic component is extracted from the stator phase voltage. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition, and is practically free of noise that can be introduced by the inverter switching, making this a robust sensing method. In addition, a simple starting method and a speed estimation approach are also proposed. Some experimental results are Provided to demonstrate the validity of the proposed control method.

Determination of parameters of double-sided slotless PMLSM for improvement of thrust and speed performance (고추력과 속도특성의 향상을 위한 양측식 슬롯리스 영구자석 직선형 동기전동기의 정수 결정)

  • Jang, Seok-Myeong;Choi, Ji-Hwan;Park, Ji-Hoon;Lee, Un-Ho;You, Dae-Joon;Sung, Tae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.41-43
    • /
    • 2009
  • This paper deals with determination of parameters of permanent magnet linear synchronous machine(PMLSM) for high thrust and improvement of speed performance. To satisfy these characteristics, PMLSM with double-sided PM mover and slotless ring-winding stator is presented. And using multilaver method, this paper analyzes the electromagnetic field phenomena and estimates parameters such as back-EMF and thrust constant. These parameters are used to derive DC link voltage of voltage source inverter with space vector pulse width modulation(SVPWM) using a digital signal processor and encoder pulse signal. The DC link voltage is one of the most important factor for accurate design. It enables to determinate dynamic operating range of system. Hence, performance evaluation is performed through dynamic modeling. Finally, in this paper, dynamic characteristics according to DC link voltage are presented as experiment result.

  • PDF

Efficiency Optimization Control of IPMSM using Neural Network (신경회로망을 이용한 IPMSM의 효율 최적화 제어)

  • Chol, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.40-49
    • /
    • 2008
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications and so of due to their excellent power to weight ratio. To obtain maximum efficiency in these applications, this paper proposes the neural network control method. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the error back propagation algorithm(EBPA) of neural network. The minimization of loss is possible to realize eHciency optimization control for the IPMSM drive. This paper proposes high performance and robust control through a real time calculation of parameter variation such as variation of back emf constant, armature resistance and d-axis inductance about the motor operation. Proposed algorithm is applied IPMSM drive system, prove validity through analysis operating characteristics con011ed by efficiency optimization control.

Sensorless Precision Speed Control of PM BLDC Motor (PM BLDC 모터의 센서리스 정밀 속도 제어)

  • Won, Chung-Yuen;Kim, Yuen-Chung;Yoon, Yong-Ho;Kim, Hack-Seong;Lee, Byuong-Kuk;Chun, Jang-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.48-56
    • /
    • 2006
  • This paper studies particularly applicable method for sensorless PM BLDC motor drive system. The waveform of the motor internal voltages(or back emf) contains a fundamental and higher order frequency harmonics. Therefore the third harmonic component is extracted from the stator phase voltage. The resulting third harmonic signal keeps a constant phase relationship with the rotor flux for any motor speed and load condition. Also because of low resolution of estimated signal obtained by the proposed sensorless algorithm, to improve the wide range of speed response characteristic more exactly, we propose the rotor position signal synthesizer using PLL circuit based on estimated signals. Some experimental results are provided to demonstrate the validity of the proposed control method.

Characteristic Analysis of Double sided Slotless Halbach Array Permanent Magnet Linear Generator with Three Phases Concentrated Winding of Cored Type by using Analytical Method (해석적 방법을 이용한 3상 집중권 권선을 갖는 양측식 슬롯리스 고정자 Halbach 배열 영구자석 선형 발전기의 특성해석)

  • Seo, Sung-Won;Choi, Jang-Young;Hong, Keyyong;Kim, Kyong-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.58-65
    • /
    • 2015
  • This paper deals with the generating characteristic analysis of permanent magnet linear generator (PMLG) with double-sided Halbach magnet array mover and three phases concentrated stator windings by using analytical method. On the basis of a magnetic vector potential and Maxwell's equations, governing equations are obtained, and magnetization modeling for Halbach magnet array is performed analytically by using the Fourier series. And then, we obtain electrical parameters such as back-EMF constant, resistance, and coil inductance based on magnetic field calculations. Finally, analytical results for generating performance are confirmed by comparing with finite element analysis results.

Maximum Torque Per Ampere Operation Point Tracking Control for Permanent Magnet Synchronous Motors (영구자석 동기전동기의 단위 전류 당 최대 토크 운전 점 추적 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.291-299
    • /
    • 2007
  • To operate a permanent magnet synchronous motor (PMSM) at a maximum torque per ampere (MTPA) operation point, the exact values of machine parameters such as inductances and back-EMF constant, which are sensitive to motor phase currents and temperature respectively, should be blown. An adaptive estimation method for on-line estimation of the machine parameters is not suitable for practical applications since it has difficulties in estimating exact values and requires complex mathematical calculations. The purpose of this paper is to present a simple MTPA operation point tracking control strategy for vector controlled PMSM drives with slow dynamic loads. The proposed method searches MTPA operation points by modulating current phase angle and observing the variation in command power. The current angle modulation strategy is designed to sense the effect of load variations in the command power. Therefore, the proposed method can track the MTPA operation points of the PMSM regardless of load variations. Computer simulation and experimental study is also presented to show the effectiveness of the proposed method.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.