• Title/Summary/Keyword: back propagation neural networks

Search Result 437, Processing Time 0.029 seconds

Failure Detection of Motors using Artifical Neural Networks (신경회로망을 이용한 전동기의 고장 부분 탐지)

  • 이권현;강희조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • Subject of this work is the application of neural networks for the signal(motor noise)recognition systems which detects motor failures and employs different signal(noise). Charaoteristics that re-sult from damaghe part and measure of motor construction during working. The four layers neural networks is applied to this examination. And consists of one input layer, two hidden layers, and one output layer, and learns by the back propagation algorithm.The results of this examination show that it the construction and the output power of the testmotor and learning motor are compatible, the damaged part of the testmotor are detected correctly in the system on the other hand, if the motors have different constrcotion but similar output power each other, mislesding results are obtained in this system.

  • PDF

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

Design of Neural-Network Based Autopilot Control System (I) (신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (I))

  • Kwak, Moon Kyu;Suh, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.56-63
    • /
    • 1997
  • This paper is concerned with the design of neural-network based autopilot control system. In this paper, the back-propagation algorithm is introduced and explained in detail. The system identification method based on neural networks for ship motion is developed and its efficacy is verified by using a simple ship maneuvering model. Problems which may arise in a complex maneuvering model are then discussed. The neural-network based system identification method developed in this paper can be used effectively for reconstructing the ship maneuvering moodel which is known to have nonlinearity.

  • PDF

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

Development of Electric Load Forecasting System Using Neural Network (신경회로망을 이용한 단기전력부하 예측용 시스템 개발)

  • Kim, H.S.;Mun, K.J.;Hwang, G.H.;Park, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

A Study on the Pattern Recognition based Distance Protective Relaying Scheme in Power System (전력계통의 패턴인식형 거리계전기법에 관한 연구)

  • 이복구;윤석무;박철원;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.9-20
    • /
    • 1998
  • In this paper, a new distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme has two blocks of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. In the first block, a filtering method using neural networks called a neural networks mapping filter(NMF) is presented to efficiently extract the features. And in the sec'ond block, the estimator called neural networks fault pattern estimator(NFPE) is also presented to classify the fault types by the extracted effective features obtained from NMF. Each block of these applied schemes is trained by back-propagation algorithm of multilayer perceptron and show the fast and accurate pattern recognition by ability of multilayer neural networks. The test result of this approach are obtained the good performance from the fault transient wave signals of EMTP(e1ectromagnetic transients program) in the various fault conditions of power systems.

  • PDF

Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics (신경망이론은 이용한 폴리우레탄 코팅포 촉감의 예측)

  • 이정순;신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.152-159
    • /
    • 2002
  • Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.