• Title/Summary/Keyword: back propagation neural networks

Search Result 437, Processing Time 0.027 seconds

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

Nonlinear system control by use of neural networks

  • Zhang, Ping;Sankai, Yoshiyuki;Ohta, Michio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.411-415
    • /
    • 1994
  • An adaptive learning control scheme by use of multilayer neural networks for compensating for uncertainties in nonlinear dynamic system is examined. Multilayer neural networks are introduced to map the uncertainties in nonlinear dynamics and perform nonlinear state feedback. Parameters of neural networks are adjusted by conventional back-propagation algorithms modified with the projection operation. Effectiveness of the proposed scheme for tracking control are demonstrated through computer simulations.

  • PDF

The optimum pattern recognition and classification using neural networks (신경망을 이용한 최적 패턴인식 및 분류)

  • Kim, J.H.;Seo, B.H.;Park, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.92-94
    • /
    • 2004
  • We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.

  • PDF

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

Time Series Prediction Using a Multi-layer Neural Network with Low Pass Filter Characteristics (저주파 필터 특성을 갖는 다층 구조 신경망을 이용한 시계열 데이터 예측)

  • Min-Ho Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • In this paper a new learning algorithm for curvature smoothing and improved generalization for multi-layer neural networks is proposed. To enhance the generalization ability a constraint term of hidden neuron activations is added to the conventional output error, which gives the curvature smoothing characteristics to multi-layer neural networks. When the total cost consisted of the output error and hidden error is minimized by gradient-descent methods, the additional descent term gives not only the Hebbian learning but also the synaptic weight decay. Therefore it incorporates error back-propagation, Hebbian, and weight decay, and additional computational requirements to the standard error back-propagation is negligible. From the computer simulation of the time series prediction with Santafe competition data it is shown that the proposed learning algorithm gives much better generalization performance.

  • PDF

Position Compensation of a Mobile Robot Using Neural Networks (신경로망을 이용한 이동 로봇의 위치 보상)

  • 이기성;조현철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.39-44
    • /
    • 1998
  • Determining the absolute location of a mobile robot is essential in the navigation of a mobile robot. In this paper, a method to determine the position of a mobile robot through the visual image of a landrnark using neural networks is proposed. In determining the position of a mobile robot on the world coordinate, there is a position error because of uncertainty in pixels, incorrect camera calibration and lens distortion. To reduce the errors, a method using a BPNN(Back Propagation Neural Network) is proposed. The experimental results are presented to illustrate the superiority of the proposed method when comparing with the conventional methods.

  • PDF

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

Fuzzy neural network modeling using hyper elliptic gaussian membership functions (초타원 가우시안 소속함수를 사용한 퍼지신경망 모델링)

  • 권오국;주영훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.442-445
    • /
    • 1997
  • We present a hybrid self-tuning method of fuzzy inference systems with hyper elliptic Gaussian membership functions using genetic algorithm(GA) and back-propagation algorithm. The proposed self-tuning method has two phases : one is the coarse tuning process based on GA and the other is the fine tuning process based on back-propagation. But the parameters which is obtained by a GA are near optimal solutions. In order to solve the problem in GA applications, it uses a back-propagation algorithm, which is one of learning algorithms in neural networks, to finely tune the parameters obtained by a GA. We provide Box-Jenkins time series to evaluate the advantage and effectiveness of the proposed approach and compare with the conventional method.

  • PDF

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF