• 제목/요약/키워드: back propagation algorithm

검색결과 898건 처리시간 0.027초

인쇄된 한글 문서의 폰트 인식 (The Font Recognition of Printed Hangul Documents)

  • 박문호;손영우;김석태;남궁재찬
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2017-2024
    • /
    • 1997
  • 본 논문은 새로운 형태의 문서 통신 방식인 지적 커뮤니케이션 시스템(IICS : Intelligent Image Communication System)의 구현을 위하여 한글 문서를 대상으로 문서를 구성하는 문자의 서체와 문자의 크기 및 기울기를 인식하고 방법을 제안한다. 서체를 인식하기 위하여 문서에서 일정한 크기의 블럭을 추출하여 주파수 분석을 하였고, 단어의 외접 사각형의 수직 거리를 이용하여 문자의 크기를 인식하였다. 문자의 기울기를 인식하기 위하여 수직 방향의 투영 프로파일을 이용하였다. 서체 인식을 위한 인식기의 가변적인 히든 노드를 이용하여 오류 역전파 알고리즘으로 학습된 MLP(Multi-layer Perceptron)를 사용하였으며, 문자의 크기와 기울기를 분류하기 위하여 Mahalanobis distance를 이용하였다. 실험을 통하여 서체 분류는 10개의 서체에 대하여 평균 95.19%의 인식률을 얻었고, 문자의 크기 분류는 5가지의 문자 크기에 대하여 평균 97.34%의 인식률을 얻었으며, 문자의 기울기는 평균 89.09%의 인식률을 얻음으로써 제안된 방법의 유용성을 입증하였다.

  • PDF

건설공사 공정별 작업기간 산정을 위한 신경망 기반 모형 구축 (Development of Estimation Model of Construction Activity Duration Using Neural Network Theory)

  • 조빛나;김현승;강인석
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3477-3483
    • /
    • 2015
  • 공정계획 수립 시 각 공정별 작업기간 산정은 프로젝트 전체 공사기간 및 사업비용 결정과 직결되기 때문에 합리적인 산정계획이 요구된다. 그러나 일반적으로 작업기간 산정은 공사 담당자의 경험과 직관을 통해 이루어지고 있고, 다양한 영향요인에 의한 불확실성으로 인해 예측에 어려움이 있다. 이에 본 연구에서는 작업기간 산정에 영향을 미치는 다양한 요인을 고려할 수 있도록 신경망 기반 건설공사 공정별 작업기간 산정 모형을 제시하고자 한다. 본 연구에서는 정량적 및 정성적 요인을 모두 고려하여 작업기간 산정 모형을 구축하고, 사례적용을 통해 모형의 적용가능성을 검토하였다. 또한 영향요인 상관성분석을 실시하여 구축된 신경망 구조의 적합성을 판단하였다. 연구에서는 작업기간 산정 모형을 통해 합리적인 일정계획을 제공함으로써 계획공사기간과 실제공사기간의 오차율을 줄이는데 도움을 줄 수 있을 것으로 기대된다.

다중 판별자를 가지는 동적 삼차원 뉴로 시스템 (A Dynamic Three Dimensional Neuro System with Multi-Discriminator)

  • 김성진;이동형;이수동
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.585-594
    • /
    • 2007
  • 오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.

인공지능을 이용한 유압모터의 서보제어 (Servo Control of Hydraulic Motor using Artificial Intelligence)

  • 신위재;허태욱
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.49-54
    • /
    • 2003
  • 본 논문에서는 PID 제어기 응답을 보상하기위해 자기구성 신경망 보상기를 추가한 제어기를 제안한다. 기존의 PID 제어기는 제어기 설계가 간단하나 계수값을 설정하는데 많은 시행착오가 필요하다. 그리고, 신경망 제어 방식은 여러 파라미터들을 설계자의 임의에 따라 결정함으로써 최적의 구조를 갖지 못하는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기위해 역전파 알고리즘을 기본으로 하여 은닉계층 노드의 활성화 함수로 가우시안 포텐셜함수를 사용하는 자기구성 신경망을 사용해, PID 제어기의 출력을 보상하도록 하였다. 자기구성 신경망은 학습을 진행함에 따라 가우시안 함수의 위치와 모양, 갯수가 자동으로 조정 되도록 하였다. 자기구성 신경망 보상기를 추가한 PID 제어기의 성능을 확인하기 위해서 2차 플랜트에 적용하여 모의 실험하였으며 DSP 프로세서를 사용하여 제어기를 구현한 후 유압 서보시스템의 속도 제어에 적용하여 실험결과를 관찰하였다.

  • PDF

비점원오염모델을 이용한 오염총량모의시스템의 개발 및 적용 (Development and Application of Total Maximum Daily Loads Simulation System Using Nonpoint Source Pollution Model)

  • 강문성;박승우
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.117-128
    • /
    • 2003
  • 본 연구에서는 소유역에서의 오염총량을 추정하기 위하여 위성영상 카테고리분류 인공신경망 모형과 지리정보시스템 기반의 오염총량모의시스템(Total maximum daily Loads simulation System, TOLOS)을 개발하였으며, 발안유역의 HP#6 소유역을 시험유역으로 선정하여 유역 수문·수질 모니터링을 수행하였고, 시험유역의 도형 자료를 구축하여 TOLOS의 적용성을 평가하였다. TOLOS의 오염총량추정 모듈인 SWAT 모형은 논에서의 지표배수량을 고려하여 구성하였다. TOLOS을 이용하여 일별 측정 자료인 유출량, 유사량, 그리고 영양물질에 대하여 SWAT 모형의 보정과 검정을 실시하였으며, 그 결과 적용 가능성이 있는 것으로 나타났다.

신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구 (Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components)

  • 이강용;황인범
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.46-53
    • /
    • 2001
  • 음향방출 신호를 이용하여 분류기를 설계하는 과정에서의 특징값 선택법에 관해 연구하였다. 분류기는 역전파법을 이용한 신경망 분류기를 사용하였다. Fisher's criterion, class mean scatter criterion, eigenvector analysis와 함께 본 논문에서 새로 제안하는 특징값 공간에서의 특징값 좌표사이의 차이를 이용하는 2-D criterion, 3-D criterion을 이용해서 특징값을 선택하고 각각에 대해 분류기를 설계하여, 인식률과 수렴속도를 비교하였다. 분류를 위한 자료를 얻기 위하여 용접부 결함시편과 로터리 압축기 금속 접촉부 결함시편을 사용하였다. 인식률 면에서 2-D criterion과 3-D criterion이 우수한 결과를 나타내었다.

  • PDF

웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구 (Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect)

  • 김성훈;이강용
    • 비파괴검사학회지
    • /
    • 제21권1호
    • /
    • pp.54-61
    • /
    • 2001
  • 웨이블릿 변환과 인공신경망을 이용하여 AE 신호를 분류하는 소프트웨어 패키지를 개발하였다. 웨이블릿 변환으로는 연속 웨이블릿 변환과 이산 웨이블릿 변환을 모두 고려하였으며, 인공신경망의 모델로는 오류 역전파 인공신경망을 사용하였다. 분류에 사용된 AE 신호는 용접부에 인공결함을 가진 시편의 3점 굽힘시험에서 발생한 신호이다. 개발된 소프트웨어 패키지를 이용하여 이 신호를 웨이블릿 변환시켜 생성된 시간-주파수 평면상에서 특징값을 추출하고 이를 인공신경망에 학습하여 인공신경망 분류기를 설계하고 검증하였다. 본 연구에서 개발된 소프트웨어 패키지를 이용한 AE 신호 분류법이 유용함을 보이고, 또한 연속 웨이블릿 변환과 이산 웨이블릿 변환에 의한 분류 결과를 비교하였다.

  • PDF

망막 세포 특성에 의한 영상인식에 관한 연구 (A Study on Image Recognition based on the Characteristics of Retinal Cells)

  • 조재현;김도현;김광백
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2143-2149
    • /
    • 2007
  • 최근 시각 장애인을 위한 인공망막 모델 구현에 관한 연구 중 시피질 자극기 기술은 시각 자극 전달의 중간 단계를 생략하고 직접 뇌세포를 자극하는 것이다. 본 논문에서는 망막에서 시각 피질로 시각정보를 전달할 때 발생하는 시각 피질의 특성, 즉 방향성에 대한 반응 특성을 특징 데이터로 구성하여 인식함으로써 인간 시각 정보 처리와 유사한 영상 추출 및 인식 모델을 제안한다. 제안된 방법은 영상의 특징을 추출 한 후 Delta-bar-delta 기반 오류 역전파 알고리즘을 적용하여 영상의 특징들을 인식한다. 제시된 방법의 성능을 분석하기 위하여 다양한 숫자 패턴들을 대상으로 실험한 결과, 제안된 망막 세포로부터 전달된 정보를 방향성에 대한 민감성을 고려하여 영상의 특성을 추출하여 인식하는 모델이 기존의 영상 추출 및 인식 모델보다 인식률에 있어서는 별 차이가 없지만 다양한 실험에서 확인할 수 있듯이 인간 시각과 같이 인식 성능이 민감하지 않는 것을 알 수 있었다.

항공사진을 이용한 산사태 탐지 및 인공신경망을 이용한 산사태 취약성 분석 (Landslide Detection and Landslide Susceptibility Mapping using Aerial Photos and Artificial Neural Networks)

  • 오현주
    • 대한원격탐사학회지
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2010
  • 본 연구의 목적은 2006년 태풍 에위니아, 빌리스, 개미와 집중호우로 인해 많은 산사태가 발생한 진부면 지역을 대상으로 항공사진을 이용한 산사태 탐지 및 인공신경망과 GIS를 이용한 산사태 취약성을 분석하는데 있다. 산사태 위치는 산사태 발생 전후의 항공사진을 판독 후 현장에서 확인하였다. 취약성 분석을 위해 지형, 지질, 토양, 임상, 선구조, 토지이용도 등의 자료는 공간 데이터베이스로 구축하였다. 산사태와 관련 요인들간의 상대적 가중치는 인공신경망의 역전파 알고리즘을 이용하여 결정하였다. 그 결과 경사방향과 경사는 다른 요인들 보다 1.2~1.5배 높게 나타났다. 이 가중치를 이용하여 취약성도를 작성 후 분석에 사용하지 않은 산사태 위치와 비교하여 검증하였다. 그 결과 예측 정확도는 81.44%로 나타났다.

인공신경망을 이용한 금강 유역 하천 수위예측 적용성 평가 (Application Assessment of water level prediction using Artificial Neural Network in Geum river basin)

  • 유완식;김선민;김연수;황의호;정관수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.424-424
    • /
    • 2018
  • 인공신경망(Artificial Neural Network; ANN)은 뇌에 존재하는 생물학적 신경세포와 이들의 신호처리 과정을 수학적으로 묘사하여 뇌가 나타내는 지능적 형태의 반응을 구현한 것이다. 인공신경망은 학습(training)을 통해 입력과 출력으로 구성되는 하나의 시스템을 병렬적이고 비선형적으로 구축할 수 있으며, 유연한 모델링 특성으로 인하여 시스템 예측, 패턴인식, 분류 및 공정제어 등의 다양한 분야에서 활용되고 있다. 인공신경망에 대한 최초의 이론은 Muculloch and Pitts(1943)가 제안한 Perceptron에서 시작 되었으며, 기본적인 학습기법인 오차역전파 기법(back-propagation Algorithm) 이 1980년대에 들어 수학적으로 정립된 이후 여러 분야에서 활용되기 시작하였다). 본 연구에서는 하도추적, 구체적으로는 상류단의 복수의 수위관측을 이용하여 하류단의 수위를 예측하기 위하여 인공신경망 모델을 구성하였다. 대상하도는 금강유역의 용담댐과 대청댐 사이의 본류이며, 상류단 입력자료로써 본류에 있는 수통, 호탄 관측소 관측수위와 지류인 송천 관측소 관측수위를 고려하였다. 출력 값으로는 하류단의 옥천 관측소 수위를 3시간 및 6시간의 선행시간으로 예측하도록 인공신경망 모형을 구성하였다. 인공신경망의 학습(testing), 시험(testing), 검증(validation)을 위해 2000년부터 2012년까지 13년간의 시수위자료를 이용하여 학습을 진행하였으며, 2013년부터 2014년의 2년간의 수위자료를 이용한 시험을 통해 최적의 모형을 선정하였다. 또한 선정된 최적의 모형을 이용하여 2015년부터 2016년까지의 수위예측을 수행하였다.

  • PDF