• Title/Summary/Keyword: back propagation (BP)

Search Result 154, Processing Time 0.027 seconds

Junction Temperature Prediction of IGBT Power Module Based on BP Neural Network

  • Wu, Junke;Zhou, Luowei;Du, Xiong;Sun, Pengju
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.970-977
    • /
    • 2014
  • In this paper, the artificial neural network is used to predict the junction temperature of the IGBT power module, by measuring the temperature sensitive electrical parameters (TSEP) of the module. An experiment circuit is built to measure saturation voltage drop and collector current under different temperature. In order to solve the nonlinear problem of TSEP approach as a junction temperature evaluation method, a Back Propagation (BP) neural network prediction model is established by using the Matlab. With the advantages of non-contact, high sensitivity, and without package open, the proposed method is also potentially promising for on-line junction temperature measurement. The Matlab simulation results show that BP neural network gives a more accuracy results, compared with the method of polynomial fitting.

Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process (절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용)

  • Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

Recognition of Disease in Medical Image (의료영상의 질환인식)

  • 신승수;이상복;조용환
    • The Journal of the Korea Contents Association
    • /
    • v.1 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • In this paper, we suggests a algorithms of recognizing the disease region by extracting particular organ from medical image. This method can extract liver region in spite of input image including many organs and charged format by using multi-threshold of feed-back-structure for segmentation liver region, and suggest the recognition of disease region in extracted liver, using multi-neural network structured by RBF and BP, overcoming the defect of single-neural network. The algorithm in this paper is proficient in adaptation for a multi form change of input medical image. This algorithm can be used at tole-medicine through automatic recognition after recognizing of the disease region by real-tire medical Image.

  • PDF

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

An application of BP-Artificial Neural Networks for factory location selection;case study of a Korean factory

  • Hou, Liyao;Suh, Eui-Ho
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.351-356
    • /
    • 2007
  • Factory location selection is very important to the success of operation of the whole supply chain, but few effective solutions exist to deliver a good result, motivated by this, this paper tries to introduce a new factory location selection methodology by employing the artificial neural networks technology. First, we reviewed previous research related to factory location selection problems, and then developed a (neural network-based factory selection model) NNFSM which adopted back-propagation neural network theory, next, we developed computer program using C++ to demonstrate our proposed model. then we did case study by choosing a Korean steelmaking company P to show how our proposed model works,. Finnaly, we concluded by highlighting the key contributions of this paper and pointing out the limitations and future research directions of this paper. Compared to other traditional factory location selection methods, our proposed model is time-saving; more efficient.and can produce a much better result.

  • PDF

Prediction of downburst-induced wind pressure coefficients on high-rise building surfaces using BP neural network

  • Fang, Zhiyuan;Wang, Zhisong;Li, Zhengliang
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.289-298
    • /
    • 2020
  • Gusts generated by downburst have caused a great variety of structural damages in many regions around the world. It is of great significance to accurately evaluate the downburst-induced wind load on high-rise building for the wind resistance design. The main objective of this paper is to propose a computational modeling approach which can satisfactorily predict the mean and fluctuating wind pressure coefficients induced by downburst on high-rise building surfaces. In this study, using an impinging jet to simulate downburst-like wind, and simultaneous pressure measurements are obtained on a high-rise building model at different radial locations. The model test data are used as the database for developing back propagation neural network (BPNN) models. Comparisons between the BPNN prediction results and those from impinging jet test demonstrate that the BPNN-based method can satisfactorily and efficiently predict the downburst-induced wind pressure coefficients on single and overall surfaces of high-rise building at various radial locations.

A Study on Obstacle Detection of Vacuum Cleaner Using Neural Network (신경망을 이용한 청소로봇의 장애물 판단에 관한 연구)

  • Lee, Sang-Hyoung;Yi, Keon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1921-1922
    • /
    • 2006
  • 청소 로봇의 장애물 판단은 청소 로봇이 정확하고 빠르게 장애물을 파악하여 정밀한 제어를 수행하며 청소 효율을 향상 시키는데 중요하다. 청소 로봇이 장애물을 판단하는데 여러 가지 알고리즘이 있지만 신경망 알고리즘 특히, BP(Back-Propagation) 알고리즘을 적용하여 장애물 인식에 있어 반복학습 시키면 청소 로봇은 보다 빠르고 정착하게 장애물을 스스로 판단 할 수 있다. 본 논문에서는 청소 로봇에 부착된 초음파 센서와 장애물과의 거리데이터를 얻어, 이를 BP 알고리즘에 적용하는 것을 연구하며 학습률, 반복학습, 최대 제곱 오차값를 조정한 실험결과로 특성변화를 관찰하고 해석하여 검증한다.

  • PDF

Improved algorithm for learning speed by using the slope of activation function (활성화함수의 기울기를 이용한 수렴속도 개선 알고리듬)

  • Kim, D.K.;Lee, S.H.;Kim, B.S.;Kwon, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.480-483
    • /
    • 1992
  • Although the back-propagation(BP) algorithm is widely used for its simple structure and easy learning method, it has a drawback of slow convergence rate. In this paper, we propose an algorithm to improve this problem by manipulating the slope parameter of the activation function. The steepest descent method is used in learning the slope parameter, as in the case of weight. The simulation shows that the learning rates of the proposed algorithm is faster than the conventional BP algorithm.

  • PDF

A new training method for neuro-control of a manipulator (매니퓰레이터의 신경제어를 위한 새로운 학습 방법)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1022-1027
    • /
    • 1991
  • A new method to control a robot manipulator by neural networks is proposed. The controller is composed of both a PD controller and a neural network-based feedforward controller. MLP(multi-layer perceptron) neural network is used for the feedforward controller and trained by BP(back-propagation) learning rule. Error terms for BP learning rule are composed of the outputs of a PD controller and the acceleration errors of manipulator joints. We compare the proposed method with existing ones and contrast performances of them by simulation. Also, We discuss the real application of the proposed method in consideration of the learning time of the neural network and the time required for sensing the joint acceleration.

  • PDF