SOCMAC 신경망에 의하여 Mackey-Glass의 비선형 시계열 예측을 시도하였다 다차원 연속 입력 변수를 가지는 문제는 요구되는 기억용량의 규모가 너무 커서 CMAC에서는 일반적으로 취급이 곤난한 대상이었으나 SOCMAC에서는 이것이 가능함을 보였다. 또한 학습과정에서 수용영역(receptive field)을 가변으로 하는 개선된 방법을 제시하였다. 예측오차는 TDNN(time-delayed neural network)이나 BP(back-propagation) 수준이었다.
Until now variable pattern classification methods have been introduced. So, variable methods in PD source classification were applied. NN(neural network) the most used scheme as a PD(partial discharge) source classification. But in recent year another method were developed. These methods is present superior to NN in the field of image and signal process function of classification. In this paper, it is show classification result in PD source using three methods; that is, BP(back-propagation), ANFIS(adaptive neuro-fuzzy inference system), PCA-LDA(principle component analysis-linear discriminant analysis).
Excellent apparel design can increase market competitiveness. This article briefly introduced the theory of fractals and its application in the field of apparel design. The convolutional neural network (CNN) algorithm was used to assist in the evaluation of apparel designs. In the case analysis, the accuracy of the evaluation was validated by comparing the CNN algorithm with two other intelligent algorithms, support vector machine (SVM) and back propagation (BP). The evaluation of the proposed design showed that compared with SVM and BP algorithms, the CNN algorithm had higher accuracy in evaluating apparel designs. The evaluation result of the proposed apparel design not only further verifies the effectiveness of the CNN algorithm, but also demonstrates that the theory of fractals can be effectively applied in apparel design to provide more innovative designs.
본 논문에서는 고해상도 위성영상에 대해서 분할된 후보영역의 텍스처 정보를 기반으로 BP 신경회로망을 이용한 도로영역검출방법을 제안한다. 먼저, N.Otsu가 제안한 히스토그램 기반의 이진화와 열림연산을 수행하여 배경영역으로부터 일차적으로 도로영역인 전경부분을 분할한다. 그리고 전경부분의 색상 히스토그램을 이용하여 주요색상을 추출한 후 ${\pm}25$ 범위 이내에 있는 영역을 도로영역 후보를 검출한다. 마지막으로, 분할된 후보 도로영역에 대해서 동시발생행렬을 이용하여 텍스처 정보를 추출한 후 BP 신경회로망을 이용하여 최종적인 도로영역을 검출한다. 제안한 방법은 도로영역이 일정한 밝기값과 형태를 가진다는 사실에 착안한 것으로, 실험에서 다양한 위성영상들을 대상으로 평균 90% 이상의 검출율을 보여 그 유효함을 보였다.
본 논문에서는 전화번호 서비스시 사용되고 있는 영(zero)에서 일까지의 2종류의 숫자음(한글발음의 셈수와 한자발음의 읽음수) 22개에 대하여 신경회로망을 이용한 음성인식 실험의 결과와 학습과정에서 나타난 제 현상에 관해 논하였다. 신경회로망은 입력단과 출력단만을 갖는 2단구조와 한 개의 은익단을 갖는 3단구조의 회로망으로 은익단의 뉴론(Neuron) 수를 11, 12 및 44개로 가변해 가면서 BP(Back-Propagation) 알고리즘에 의하여 학습하였고 학습과정에서는 학습팩터(Learning factor), 학습방법(예로써 Random or Cycle), 모멘텀(Momentum)등을 조정해 가면서 최적의 학습과정을 찾고자 하였다. 실험결과 2단구조에 의한 화자독립의 경우 최고 96%의 인식율을 나타냈고 학습과정이 너무 많을 경우 오히려 인식율이 낮아졌으며 이 현상은 3단구조의 회로망에서 더욱 두드러지게 나타났다.
수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive learming rate) 방법을 이용한 MANN 모형, 레번버그-마쿼트(Levenberg-Marquardt) 방법을 이 용한 LMNN 모형, 그리고 정성적인 판단인자를 첨가하여 정량적인 월 수질 자료와 분별, 학습하 도록 은닉층을 분리한 MNN 모형으로 구분하였다. 대체로 신경망 모형의 예측치가 실측치에 근사한 결과를 보였으며, 은닉층을 분리한 MNN 모형이 가장 우수한 결과를 보였다.
본 논문은 팀 스포츠(team sports)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(group formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기의 대표 프레임 상에서 선수들과 공의 위치정보를 추출하고 그룹 포메이션 정보를 기초로 뉴럴네트워크의 BP(Back-propagation) 알고리즘을 사용하여 축구경기 하이라이트 장면의 자동추출을 위한 공격패턴 자동분류 기법을 개발 및 검증하였다. 또한, 실험에는 ‘98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72, 코너킥 39, 프리킥 52개의 총 297 개의 데이타를 추출하여 사용하였다. 실험결과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%. 코너킥 97.4%, 프리킥 75% 로서 매우 양호한 인식율을 보였다.
In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.
A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.
본 연구에서는 구간 벡터의 비선형 사상의 근사를 행하기 위한 4가지 신경회로망의 학습 알고리즘을 제안한다. 제안된 방법에 있어서, 신경회로망의 학습에 이용되는 입출력 데이터 쌓은 구간으로 구성되어 있다. 첫번째 방법은 전처리된 학습용 데이터 상을 통상의 역전파 알고리즘에 직접 응용하는 것이고, 두번째 방법은 두 개의 역전파 알고리즘을 이용하는 것이다. 세번째 방법은 구간 입출력 데이터를 처리할 수 있는 역전파 알고리즘으로 확장한 것이다. 마지막 방법은 구간 결합강도 및 구간 역치를 가진 신경회로망으로 확장한 것이다. 제안된 이 방법들은 컴퓨터 시뮬레이션에 의해 서로 비교 평가된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.