• 제목/요약/키워드: back propagation(BP)

검색결과 152건 처리시간 0.022초

자율조직 CMAC 신경망에 의한 비선형 시계열 예측 (Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network)

  • 이태호
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.62-66
    • /
    • 2002
  • SOCMAC 신경망에 의하여 Mackey-Glass의 비선형 시계열 예측을 시도하였다 다차원 연속 입력 변수를 가지는 문제는 요구되는 기억용량의 규모가 너무 커서 CMAC에서는 일반적으로 취급이 곤난한 대상이었으나 SOCMAC에서는 이것이 가능함을 보였다. 또한 학습과정에서 수용영역(receptive field)을 가변으로 하는 개선된 방법을 제시하였다. 예측오차는 TDNN(time-delayed neural network)이나 BP(back-propagation) 수준이었다.

  • PDF

부분방전원 분류기법의 패턴분류율 비교 (Comparison of Classification rate of PD Sources)

  • 박성희;임기조;강성화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.566-567
    • /
    • 2005
  • Until now variable pattern classification methods have been introduced. So, variable methods in PD source classification were applied. NN(neural network) the most used scheme as a PD(partial discharge) source classification. But in recent year another method were developed. These methods is present superior to NN in the field of image and signal process function of classification. In this paper, it is show classification result in PD source using three methods; that is, BP(back-propagation), ANFIS(adaptive neuro-fuzzy inference system), PCA-LDA(principle component analysis-linear discriminant analysis).

  • PDF

Research on Pattern Elements and Colors in Apparel Design through Fractal Theory

  • Dan Li;Chengjun Yuan
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.409-417
    • /
    • 2024
  • Excellent apparel design can increase market competitiveness. This article briefly introduced the theory of fractals and its application in the field of apparel design. The convolutional neural network (CNN) algorithm was used to assist in the evaluation of apparel designs. In the case analysis, the accuracy of the evaluation was validated by comparing the CNN algorithm with two other intelligent algorithms, support vector machine (SVM) and back propagation (BP). The evaluation of the proposed design showed that compared with SVM and BP algorithms, the CNN algorithm had higher accuracy in evaluating apparel designs. The evaluation result of the proposed apparel design not only further verifies the effectiveness of the CNN algorithm, but also demonstrates that the theory of fractals can be effectively applied in apparel design to provide more innovative designs.

텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출 (Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network)

  • 서정;김보람;오준택;김욱현
    • 융합신호처리학회논문지
    • /
    • 제10권3호
    • /
    • pp.164-169
    • /
    • 2009
  • 본 논문에서는 고해상도 위성영상에 대해서 분할된 후보영역의 텍스처 정보를 기반으로 BP 신경회로망을 이용한 도로영역검출방법을 제안한다. 먼저, N.Otsu가 제안한 히스토그램 기반의 이진화와 열림연산을 수행하여 배경영역으로부터 일차적으로 도로영역인 전경부분을 분할한다. 그리고 전경부분의 색상 히스토그램을 이용하여 주요색상을 추출한 후 ${\pm}25$ 범위 이내에 있는 영역을 도로영역 후보를 검출한다. 마지막으로, 분할된 후보 도로영역에 대해서 동시발생행렬을 이용하여 텍스처 정보를 추출한 후 BP 신경회로망을 이용하여 최종적인 도로영역을 검출한다. 제안한 방법은 도로영역이 일정한 밝기값과 형태를 가진다는 사실에 착안한 것으로, 실험에서 다양한 위성영상들을 대상으로 평균 90% 이상의 검출율을 보여 그 유효함을 보였다.

  • PDF

신경회로망을 이용한 음성인식과 그 학습 (Speech Recognition and Its Learning by Neural Networks)

  • 이권현
    • 한국통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.350-357
    • /
    • 1991
  • 본 논문에서는 전화번호 서비스시 사용되고 있는 영(zero)에서 일까지의 2종류의 숫자음(한글발음의 셈수와 한자발음의 읽음수) 22개에 대하여 신경회로망을 이용한 음성인식 실험의 결과와 학습과정에서 나타난 제 현상에 관해 논하였다. 신경회로망은 입력단과 출력단만을 갖는 2단구조와 한 개의 은익단을 갖는 3단구조의 회로망으로 은익단의 뉴론(Neuron) 수를 11, 12 및 44개로 가변해 가면서 BP(Back-Propagation) 알고리즘에 의하여 학습하였고 학습과정에서는 학습팩터(Learning factor), 학습방법(예로써 Random or Cycle), 모멘텀(Momentum)등을 조정해 가면서 최적의 학습과정을 찾고자 하였다. 실험결과 2단구조에 의한 화자독립의 경우 최고 96%의 인식율을 나타냈고 학습과정이 너무 많을 경우 오히려 인식율이 낮아졌으며 이 현상은 3단구조의 회로망에서 더욱 두드러지게 나타났다.

  • PDF

신경망 모형을 적용한 금강 공주지점의 수질예측 (Water Quality Forecasting at Gongju station in Geum River using Neural Network Model)

  • 안상진;연인성;한양수;이재경
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.701-711
    • /
    • 2001
  • 수질 인자들은 다양하고 관계가 복잡하여 수질 변화를 예측하는데 많은 어려움이 있다. 따라서 입력과 출력이 비교적 용이하고 비선형 예측에 적합한 신경망 모형을 이용하여 금강유역 공주지점의 DO, BOD, TN에 대한 월수질 예측을 수행하고 ARIMA 모형과 비교하여 적용 가능성을 검토하였다. 사용된 신경망 모형은 학습을 위해 BP(Back Propagation) 알고리즘을 적용하였으며 학습을 향상시키기 위한 모멘트-적응학습율(Moment-Adaptive learming rate) 방법을 이용한 MANN 모형, 레번버그-마쿼트(Levenberg-Marquardt) 방법을 이 용한 LMNN 모형, 그리고 정성적인 판단인자를 첨가하여 정량적인 월 수질 자료와 분별, 학습하 도록 은닉층을 분리한 MNN 모형으로 구분하였다. 대체로 신경망 모형의 예측치가 실측치에 근사한 결과를 보였으며, 은닉층을 분리한 MNN 모형이 가장 우수한 결과를 보였다.

  • PDF

뉴럴네트워크를 이용한 축구경기에 있어서의 공격패턴 자동분류 기법 (Automatic Classification Technique of Offence Pattern in Soccer Game using Neural Networks)

  • 김현숙;김광용;남성현;황종선;양영규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권7호
    • /
    • pp.712-722
    • /
    • 2000
  • 본 논문은 팀 스포츠(team sports)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(group formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기의 대표 프레임 상에서 선수들과 공의 위치정보를 추출하고 그룹 포메이션 정보를 기초로 뉴럴네트워크의 BP(Back-propagation) 알고리즘을 사용하여 축구경기 하이라이트 장면의 자동추출을 위한 공격패턴 자동분류 기법을 개발 및 검증하였다. 또한, 실험에는 ‘98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72, 코너킥 39, 프리킥 52개의 총 297 개의 데이타를 추출하여 사용하였다. 실험결과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%. 코너킥 97.4%, 프리킥 75% 로서 매우 양호한 인식율을 보였다.

  • PDF

하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계 (Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process)

  • 이승철;권학주;오성권
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

신경회로망에 의한 구간 벡터의 비선형 사상 (Nonlinear mappings of interval vectors by neural networks)

  • 권기택;배철수
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.2119-2132
    • /
    • 1996
  • 본 연구에서는 구간 벡터의 비선형 사상의 근사를 행하기 위한 4가지 신경회로망의 학습 알고리즘을 제안한다. 제안된 방법에 있어서, 신경회로망의 학습에 이용되는 입출력 데이터 쌓은 구간으로 구성되어 있다. 첫번째 방법은 전처리된 학습용 데이터 상을 통상의 역전파 알고리즘에 직접 응용하는 것이고, 두번째 방법은 두 개의 역전파 알고리즘을 이용하는 것이다. 세번째 방법은 구간 입출력 데이터를 처리할 수 있는 역전파 알고리즘으로 확장한 것이다. 마지막 방법은 구간 결합강도 및 구간 역치를 가진 신경회로망으로 확장한 것이다. 제안된 이 방법들은 컴퓨터 시뮬레이션에 의해 서로 비교 평가된다.

  • PDF