• Title/Summary/Keyword: b-amyloid

Search Result 69, Processing Time 0.032 seconds

Identification of Gene Expression Signatures in Korean Acute Leukemia Patients

  • Lee kyung-Hun;Park Se-Won;Kim In-Ho;Yoon Sung-Soo;Park Seon-Yang;Kim Byoung-Kook
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.97-102
    • /
    • 2006
  • In acute leukemia patients, several successful methods of expression profiling have been used for various purposes, i.e., to identify new disease class, to select a therapeutic target, or to predict chemo-sensitivity and clinical outcome. In the present study, we tested the peripheral blood of 47 acute leukemia patients in an attempt to identify differentially expressed genes in AML and ALL using a Korean-made 10K oligo-nucleotide microarray. Methods: Total RNA was prepared from peripheral blood and amplified for microarray experimentation. SAM (significant analysis of microarray) and PAM (prediction analysis of microarray) were used to select significant genes. The selected genes were tested for in a test group, independently of the training group. Results: We identified 345 differentially expressed genes that differentiated AML and ALL patients (FWER<0.05). Genes were selected using the training group (n=35) and tested for in the test group (n=12). Both training group and test group discriminated AML and ALL patients accurately. Genes that showed relatively high expression in AML patients were deoxynucleotidyl transferase, pre-B lymphocyte gene 3, B-cell linker, CD9 antigen, lymphoid enhancer-binding factor 1, CD79B antigen, and early B-cell factor. Genes highly expressed in ALL patients were annexin A 1, amyloid beta (A4) precursor protein, amyloid beta (A4) precursor-like protein 2, cathepsin C, lysozyme (renal amyloidosis), myeloperoxidase, and hematopoietic prostaglandin D2 synthase. Conclusion: This study provided genome wide molecular signatures of Korean acute leukemia patients, which clearly identify AML and ALL. Given with other reported signatures, these molecular signatures provide a means of achieving a molecular diagnosis in Korean acute leukemia patents.

Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation

  • Yang, Seung-Ju;Kim, Jiae;Lee, Sang Eun;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.634-639
    • /
    • 2017
  • We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid ${\beta}$ ($A{\beta}$)-treated primary microglial cells. KHG26792 attenuated the $A{\beta}-induced$ production of inflammatory mediators such as IL-6, $IL-1{\beta}$, $TNF-{\alpha}$, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by $A{\beta}$ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the $A{\beta}-induced$ increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of $Akt/GSK-3{\beta}$ signaling and by decreasing the $A{\beta}-induced$ translocation of $NF-{\kappa}B$. Our results provide novel insights into the use of KHG26792 as a potential agent against $A{\beta}$ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against $A{\beta}-induced$ toxicity.

Inhibitory Effects of Flavonoids Isolated from Leaves of Petasites japonicus on $\beta$-Secretase (BACE1)

  • Song, Kyung-Sik;Choi, Sun-Ha;Hur, Jong-Moon;Park, Hyo-Jun;Yang, Eun-Ju;MookJung, In-Hee;Yi, Jung-Hyun;Jun, Mi-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1165-1170
    • /
    • 2008
  • The deposition of the amyloid $\beta}$ ($A{\beta}$)-peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is critical feature in the progress of Alzheimer's disease (AD). Consequently, BACE1, a key enzyme in the production of $A{\beta}$, is a prime target for therapeutic intervention in AD. In the course of searching for BACE1 inhibitors from natural sources, the ethyl acetate fraction of Petasites japonicus showed potent inhibitory activity. Two BACE1 inhibitors quercetin (QC) and kaempferol 3-O-(6"-acetyl)-$\beta$-glucopyranoside (KAG) were isolated from P. japonicus by activity-guided purification. QC, in particular, non-competitively attenuated BACE1 activity with $IC_{50}$ value of $2.1{\times}10^{-6}\;M$ and $K_i$ value of $3.7{\times}10^{-6}\;M$. Both compounds exhibited less inhibition of $\alpha$-secreatase (TACE) and other serine proteases including chymotrypsin, trypsin, and elastase, suggesting that they ere relatively specific and selective inhibitors to BACE1. Furthermore, both compounds significantly reduced the extracellular $A{\beta}$ secretion in $APP_{695}$-transfected B103 cells.

Fragmentation Analysis of rIAPP Monomer, Dimer, and [MrIAPP + MhIAPP]5+ Using Collision-Induced Dissociation with Electrospray Ionization Mass Spectrometry

  • Kim, Jeongmo;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.179-185
    • /
    • 2021
  • Collision-induced dissociation (CID) combined with electrospray ionization mass spectrometry (ESI-MS) was used to obtain structural information on rat islet amyloid polypeptide (rIAPP) monomers (M) and dimers (D) observed in the multiply charged state in the MS spectrum. MS/MS analysis indicated that the rIAPP monomers adopt distinct structures depending on the molecular ion charge state. Peptide bond dissociation between L27 and P28 was observed in the MS/MS spectra of rIAPP monomers, regardless of the monomer molecular ion charge state. MS/MS analysis of the dimers indicated that D5+ comprised M2+ and M3+ subunits, and that the peptide bond dissociation process between the L27 and P28 residues of the monomer subunit was also maintained. The observation of (M+ b27)4+ and (M+ y10)3+ fragment ions were deduced to originate from the two different D5+ complex geometries, the N-terminal and C-terminal interaction geometries, respectively. The fragmentation pattern of the [MrIAPP + MhIAPP]5+ MS/MS spectrum showed that the interaction occurred between the two N-terminal regions of MrIAPP and MhIAPP in the heterogeneous dimer (hetero-dimer) D5+ structure.

Protective effects of Cirsium japonicum var. maackii against amyloid beta-induced neurotoxicity in C6 glial cells

  • Kim, Ji Hyun;Kim, Min Jeong;Choi, Ji Myung;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.369-379
    • /
    • 2019
  • Alzheimer's disease (AD) is the most common neurodegenerative disease associated with age, and amyloid beta ($A{\beta}$) is known to cause Alzheimer's disease. In the present study, we investigated the protective effects of Cirsium japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells. The cells treated with $A{\beta}_{25-35}$ showed a decrease in cell viability and an increase in reactive oxygen species (ROS) production compared with the non-treated cells. However, the cells treated with the C. japonicum var. maackii extract and its fractions increased the cell viability and inhibited the $A{\beta}$-induced ROS production. These results demonstrate the neuroprotective effects of C. japonicum var. maackii against $A{\beta}$. To further examine the protective mechanism, we measured inflammation and apoptosis related protein expressions. The cells treated with extract and fractions from C. japonicum var. maackii down-regulated inflammatory related proteins such as cyclooxygenase-2, interleukin $(IL)-1{\beta}$, and IL-6, and attenuated apoptosis related proteins including B-cell lymphoma-2 (Bcl-2) associated X protein/Bcl-2 ratio. In particular, the ethanol and ethylacetate fraction exhibited higher inhibitory effect against ROS production and apoptosis-related protein expressions among the extract and the other fractions. Therefore, this study demonstrated the protective effects of C. japonicum var. maackii extract and its fractions against $A{\beta}$-induced neurotoxicity in C6 glial cells through the regulation of oxidative stress, inflammation, and apoptosis, suggesting that it might have potential as a therapeutic for AD.

The Significance on Determination of Bovine Serum Amyloid Protein A(SAA) Concentration (소 혈청 아밀로이드 단백 A(SAA) 농도 측정의 의의)

  • Kim Duck-Hwan;Lee Kwang-Won;van Ederen A.M.;Tooten P.C.J,;Niewold Th.A.;Gruys E.
    • Journal of Veterinary Clinics
    • /
    • v.10 no.1
    • /
    • pp.141-145
    • /
    • 1993
  • The present study was performed in order to clarify the significance of serum amyloid A(SAA) estimation for the diagnosis of bovine amyloidosis and SAA as a useful parameter for the health status in herds. Twelve dutch dairy cows with final diagnosis(2 with amyloidosis, 3 with acute inflammatory disease and 7 with chronic inflammatory disease) were used to charify the significance of SAA determination for the diagnosis of bovine amyloidosis. The SAA concentration in the group of inflammatory disease was higher than that of amyloldotic group. Further the SAA value in the group of acute inflammatory disease was higher than that of chronic ones. To clarify the significance of SAA estimation as a useful parameter for the health status in herds, two Korean dairy farms(A and B) were selected and the SAA concentration was determined in total 76 cows(49 from A farm and 27 from B farm). The SAA concentration in cows from A farm was ranged with 0~169%. The cows with high level of SAA(31~169%) had the disease histories(1 with retained placenta, 3 with chronic mastitis, 2 with acute mastitis, 1 with abortion and acute mastitis, 1 with ovarian dysfunction, 1 with downer cow syndrome and 1 with laceration of the teat). The SAA value in the cows from B farm was ranged with 0~29% and disease history was not detected. In conclusion the SAA determination only is thought to be difficult for the diagnosis of bovine amyloidosis. Furthermore SAA estimation is thought to be a useful parameter for the health status in herds.

  • PDF

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells (BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구)

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, In Sik;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

Inhibitory Effect of Bee Venom on Lipopolysaccharide-induced Memorial Impairment and Acetylcholine Esterase, Secretase Activity

  • Kwon, Dae-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.33-46
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the extracellular deposition of beta-amyloid peptide $(A{\beta})$ in cerebral plaques. $A{\beta}$ is derived from the ${\beta}-amyloid$ precursor protein (APP) by the enzymes, ${\beta}-$ and ${\eta}o-secretase$. Compounds that ${\beta}-$ or ${\eta}o-secretase$ inhibit activity, can reduce the production of $A{\beta}$ peptides, and thus have therapeutic potential in the treatment of AD. Increasing body of evidence has been demonstrated that Bee Venom(BV) Acupuncture could compete with complex protein involving in multiple step of $NF-{\kappa}B$ activation and exert the anti-inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-{\kappa}B$. In this study, I investigated possible effects of BV on memory dysfunction caused by lipopolysaccharide (LPS) and $A{\beta}$ through inhibition of secretases activities and $A{\beta}$ aggregation. I examined the improving effect of BV on the LPS (2.5 mg/Kg, i.p.)-induced memory dysfunction using passive avoidance response and water maze tests in the mice. BV (0.84, $1.67\;{\mu}g/ml$) reversed the LPS-induced memorial dysfunction in dose dependent manner. BV also dose-dependently attenuated LPS-induced ${\beta}$ and ${\eta}o-secretase$ activities in cerebral cortex and hippocampus of the mice brain. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

Analysis of Amyloid Beta 1-16 (Aβ16) Monomer and Dimer Using Electrospray Ionization Mass Spectrometry with Collision-Induced Dissociation

  • Kim, Kyoung Min;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2022
  • The monomer and dimer structures of the amyloid fragment Aβ(1-16) sequence formed in H2O were investigated using electrospray ionization mass spectrometry (MS) and tandem MS (MS/MS). Aβ16 monomers and dimers were indicated by signals representing multiple proton adduct forms, [monomer+zH]n+ (=Mz+, z = charge state) and [dimer+zH]z+ (=Dz+), in the MS spectrum. Fragment ions of monomers and dimers were observed using collision-induced dissociation MS/MS. Peptide bond dissociation was mostly observed in the D1-D7 and V11-K16 regions of the MS/MS spectra for the monomer (or dimer), regardless of the monomer (or dimer) charge state. Both covalent and non-covalent bond dissociation processes were indicated by the MS/MS results for the dimers. During the non-covalent bond dissociation process, the D3+ dimer complex was separated into two components: the M1+ and M2+ subunits. During the covalent bond dissociation of the D3+ dimer complex, the b and y fragment ions attached to the monomer, (M+b10-15)z+ and (M+y9-15)z+, were thought to originate from the dissociation of the M2+ monomer component of the (M1++M2+) complex. Two different D3+ complex geometries exist; two distinguished interaction geometries resulting from interactions between the M1+ monomer and two different regions of M2+ (the N-terminus and C-terminus) are proposed. Intricate fragmentation patterns were observed in the MS/MS spectrum of the D5+ complex. The complicated nature of the MS/MS spectrum is attributable to the coexistence of two D5+ configurations, (M1++M4+) and (M2+M3+), in the Aβ16 solution.