• Title/Summary/Keyword: azo dye

Search Result 135, Processing Time 0.021 seconds

Photochromism of Cationic Azo Dyes Containing 2,4-Dimethylimidazole (2,4-디메틸이미다졸환을 가지는 아조계 카디온염료의 포토크로미즘)

  • Cho, Myung Lae;Yoon, Nam Sik;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.3 no.3
    • /
    • pp.1-5
    • /
    • 1991
  • Cationic azo dyes were synthesized by coupling aniline and its derivatives with 2,4-dimethyl imidazole as a coupler, and their photochromic behavior was investigated. The dyes exhibited little photochromism on wool, but to a considerable degree on Dacron T92(anionic modified polyester), the photochromism being prominent for the dye with electron-releasing substituent on diazo component. Little photochromism on wool can be attributed to a decreased mobility of dye by the various interactions between the dye and wool molecules, which interferes the cis-trans isomeriation of dye. On Dacron T92 there can not be any obstacle for the cis-trans isomerization of dye, hence reversible color change may occur. The electron-releasing substituent on diazo component may be helpful for the photochromism of dye by increasing the n-electron density of phenyl ring, which can stabilize the cis-form of the dye by the interaction with the positive charge of imidazole ring.

  • PDF

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Removal of Dyes by the Biosorption Using Biomass of Penicillium janthinellum (Penicillium janthinellum 균체를 이용한 생물흡착에 의한 염료의 제거)

  • 이제혁;전억한
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • A biosorption of azo and reactive dyes into the intact and modified biomass of Penicillium janthinellum were investigated. Initial pH of medium affected the initial adsorption rate and decolorization. The initial optimum pH was found to be 2.0, and the maximum adsorption rates of dyes were $40^{\circ}C$. The reactive dyes called Apollocion Red 7EB, Apollofix Red SF-3B and Apollocion Red H-E3B showed the high initial adsorption rates as 0.06, 0.086 and 0.079 mg/g.min, respectively. A mixture of dyes containing azo and reactive dyes was adsorbed to the biomass of Pen. janthinellum and revealed that the initial adsorption rate was 0.084 mg/g.min. Both percent decolorization and the influence on the dye adsorption rate. Modified biomass of Pen. janthinellum was also investigated for the dye adsorption and the superior dye loading performance was observed compared with the ion-exchange/chelating resins used for removal of Apollocion Red 7EB.

  • PDF

Response of Bioluminescent Bacteria to Sixteen Azo Dyes

  • Lee, Hwa-Young;Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • Recombinant bioluminescent bacteria were used to monitor and classify the to xicity of azo dyes. Two constitutive bioluminescent bacteria, Photobacterium phosphoreum and Es-Cherichia coli, E, coli GC2 (lac::luxCOABE), were used to detect the cellular toxicity of the azo dyes. In addition, four stress-inducible bioluminestent E. coli, DPD2794 (recA::luxCDABE), a DNA damage Sensitive strain; DPD2540 (fabA::luxCDABE), a membrane damage sensitive strain; DPD2511 (katG::luxCDABE), an oxidative damage sensitive strain; and TV1061 (grpE::luxCDABE), a protein damage sensitive strain, were used to provide information about the type of toxicity caused by crystal violet, the most toxic dye of the 16 azo dyes tested. These results suggest that azo dyes result in serious cellular toxicity in bacteria, and that toxicity monitoring and classific ation of some azo dyes, In the field, may be possible using these recombinant bioluminescent bacteria.

Dispersant-free dyeing of acetate with temporarily solubilized azo disperse dyes

  • Lee, Jung-Jin
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.15-21
    • /
    • 2006
  • Temporarily solubilized azo disperse dyes containing ${\beta}$-sulfatoethylsufonyl group were applied to acetate fabric and the feasibility of dispersant-free dyeing was investigated. The color yields of the dyes on acetate fabric were found to be dependent on dye bath pH as well as dyeing temperature. The optimum results were obtained at pH 6 and $80^{\circ}C$. The dyes showed good exhaustion and levelling properties. Vinylsulfone derivatives of the dyes were prepared and applied to acetate with dispersant. Dyeing properties of the temporarily solubilized disperse dyes were similar to or better than those of the vinylsulfone dyes. The dyes showed moderate to good fastness properties on acetate.

Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs

  • Zonoozi, M. Hasani;Moghaddam, M.R. Alavi;Maknoon, R.
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.281-293
    • /
    • 2014
  • The present work aimed to study the decolorization kinetics and characteristics of a selected azo dye under the influence of two key operational parameters including hydraulic retention time (HRT) and solid retention time (SRT). The decolorization efficiency and the two important criteria of k and normalized k (k/MLSS) were evaluated in lab-scale membrane sequencing batch reactors (MSBRs) at various HRTs of 48, 24 and 16 h (with constant SRT) and in addition, at various SRTs of infinity, 40 and 10 d (with constant HRT). According to the obtained results, both zero and first-order kinetics were properly fitted the decolorization profiles of the selected azo dye in all of the applied HRTs and SRTs. Increase of both HRT and SRT positively affected the decolorization efficiency. More MLSS concentrations corresponded to the lower HRTs and the higher SRTs resulted in higher decolorization rate constants (k). However, the effect of reducing the HRT was not compensated by increase of the MLSS concentration in order to reach higher decolorization efficiency. In addition, increase of the decolorization efficiency, as a consequence of the higher MLSS concentrations at longer SRTs, was restrained by decrease of the time-limited decolorization capability of biomass (represented by normalized k). Evaluation of both k and normalized k is suggested in order to have a more precise study on the decolorization kinetics and characteristics.

The Investigation on Color Change of Dis-azo Acid Dye in Wool Dyeing (양모섬유의 염색시 디스아조계 산성염료의 변색현상 규명)

  • 김미경;김태경;윤석한;임용진
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.86-92
    • /
    • 2003
  • It is already known that the color of wool fabric dyed with disazo acid dyes could be changed in dyeing process and this is accelerated under alkaline condition. Focus was given to figuring out the mechanism of this color change, through the LC-MS analysis. In this study, no color change was seen in wool fabrics dyed with C. I. Acid Blue 113 under weak acidic, neutral and weak alkaline conditions for 1hour. However, the wool fabrics dyed under weak alkaline condition for a long time over 3 hours fumed reddish orange. When the wool fabrics dyed under weak acidic, neutral and weak alkaline conditions were treated with $0.5g/L\;Na_2C0_3$ solution, all of them turned reddish orange. On the other hand, the color of silk fabrics dyed with C. I. Acid Blue 113 were not changed after the same alkaline treatment. Wool contains cystine and cysteine, whereas silk does not. Due to the reversible reduction/oxidation process of cystine and cysteine in wool dyeing, the C. I. Acid Blue 113 of the dis-azo type is decomposed by reduction and consequently turned them into the reddish orange mono-azo types dye.

Decolorization of a Sulfonated Azo Dye, Congo Red, by Staphylococcus sp. EY-3

  • PARK, EUN-HEE;JANG, MOON-SUN;CHA, IN-HO;CHOI, YONG-LARK;CHO, YOUNG-SU;KIM, CHEORL-HO;LEE, YOUNG-CHOON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.221-225
    • /
    • 2005
  • A Staphylococcus sp. EY-3 with the capability of decolorizing Congo Red was isolated from soil at an effluent treatment plant of a textile and dyeing industry. This strain was able to almost completely decolorize a high concentration of Congo Red in 48 h under aerobic conditions. Optimal color removal (more than 96%) was achieved at 30- 40oC, and no noticeable effects of different pH values (5.5- 8.0) on decolorization were observed. This strain also exhibited a remarkable decolorization capability against azo dyes under aerobic conditions, even at a high concentration (dyes 1 g/l) of dye. The metabolic product of Congo Red degradation by this strain was identified by gas chromatography with mass selective detection (GC/MSD) to be an amine derivative benzidine.

Structural and Optical Properties of AZO/Ag/AZO Films for Dye Sensitized Solar Cell (염료감응 태양전지 응용을 위한 다층박막구조 투명전도막의 특성평가)

  • Cho, Hyun-Jin;Hur, Sung-Gi;Park, Jong-Hyun;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.24-24
    • /
    • 2009
  • 투명전극 (TCO Transparent Conductive Oxide)은 Solar cell, Touch panel, Sensor 등 많은 분야에 이용되어지고 있다. ZnO 그리고 $SnO_2$는 ITO룰 대체하기 위하여 오래전부터 연구가 되어지고 있다. 하지만 ZnO가 가지고 있는 많은 장점에도 불구하고 ITO를 대체하기 위한 전기적 특성이 충분하지 않다. 따라서 ZnO에 Al를 도핑하는 등 다양한 연구가 진행되어왔다. 본 실험은 우수한 광학특성 및 전기적 (10-5) 특성을 확보하기 위하여 AZO/Ag/AZO 다층박막구조 형성하였다. 또한 염료감응 태양전지에 적용하기 위하여 다층박막구조를 이용한 안정성 테스트를 진행하였다.

  • PDF