• 제목/요약/키워드: azimuth

검색결과 794건 처리시간 0.029초

창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구 (A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window)

  • 이장범
    • 대한건축학회논문집:계획계
    • /
    • 제35권11호
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

태양방위각 보상에 의한 지질학적 선구조 분석 (Analysis of Geological Lineaments with Compensation of the Sun's Azimuth Angle)

  • 이진걸
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.947-950
    • /
    • 1998
  • Geological structures such as fault and fracture patterns provide important information about preliminary exploration of mineralized areas and geological characterization. We apply a filtering method taking the sun's azimuth angle into account to a shaded relief image derived from a digital elevation model (DEM), by which even linear edges extending parallel to the sun direction can be effectively extracted. Then, Generalized Hough tranform is applied to extract lineanments which correspond to fault and fracture patterns.

  • PDF

건물적용 태양광발전시스템의 국내 지역에 따른 설치각도별 연간 전력생산량 예측에 관한 연구 (Annual energy yield prediction of building added PV system depending on the installation angle and the location in Korea)

  • 김동수;신우철;윤종호
    • KIEAE Journal
    • /
    • 제14권1호
    • /
    • pp.67-74
    • /
    • 2014
  • There have distinctly been no the installation criteria and maintenance management of BIPV systems, although the BIPV market is consistently going on increasing. In addition, consideration of the BIPV generation quantity which has been installed at several diverse places is currently almost behind within region in Korea. Therefore, the main aim of this study is to evaluate the BIPV generation and to be base data of reducing rate depending on regional installation angles using PVpro which was verified by measured data. Various conditions were an angle of inclination and azimuth under six major cities: Seoul, Daejeon, Daegu, Busan, Gwangju, Jeju-si for the BIPV system generation analysis. As the results, Seoul showed the lowest BIPV generation: 1,054kWh/kWp.year, and Jeju-si have 5percent more generation: 1,108.0kWh/kWp.year than Seoul on horizontal plane. Gwangju and Daejeon turned out to have similar generation of result, and Busan showed the highest generation: 1,193.5kWh/kWp.year, which was increased by over 13percent from Seoul on horizontal plane. Another result, decreasing rate of BIPV generation depending on regional included angle indicate that the best position was located on azimuth: $0^{\circ}$(The south side) following the horizontal position(an angle of inclination: $30^{\circ}$). And the direction on a south vertical position(azimuth: $0^{\circ}$, an angle of inclination: $90^{\circ}$) then turned out reducing rate about 40percent compared with the best one. Therefore, these results would be used to identify the installation angle of the BIPV module as an appropriate position.

항공용 안테나 하이브리드 모노펄스 레이다 시스템의 실용적 표적 방위각 추정 방법 (Practical Method to Extract Azimuth Angle of Target for Air-Borne Antenna Hybrid Mono-Pulse Radar System)

  • 김진우;윤재혁;노수현;이종은;전영범;옥재우;유응노;윤상호;신현익
    • 한국전자파학회논문지
    • /
    • 제29권9호
    • /
    • pp.735-738
    • /
    • 2018
  • 항공용 안테나 하이브리드 모노펄스 레이다 시스템을 이용하여 지상 이동표적 탐지 시, 표적의 방위각 정확도는 시스템 내 채널 간 위상 불균형에 따른 모노펄스 기울기 추정 정확도에 지배적으로 영향을 받는다. 본 논문에서는 안테나와 180도 하이브리드의 물리적 길이 차이에 의한 위상 불균형을 효과적으로 보상할 수 있는 방법을 제안 하였다. 비행시험을 통하여 제안된 방법의 성능을 검증한 결과, 보상 전보다 유의한 성능개선 효과를 확인할 수 있었다.

The Flow Instability Over the Infinite Rotating Disk

  • Lee, Yun-Yong;Hwang, Young-Kyu;Lee, Kwang-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1388-1396
    • /
    • 2003
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. The instability labeled Type II by Faller occurs first at lower Reynolds number than that of well known Type I instability. Detailed numerical values of the amplification rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving the appropriate linear stability equations reformulated not only by considering whole convective terms but also by correcting some errors in the previous stability equations. The present stability results agree with the previously known ones within reasonable limit. Consequently, the flow is found to be always stable for a disturbance whose dimensionless wave number is greater than 0.75. Some spatial amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$ = 12.5$^{\circ}$ to 15$^{\circ}$. Also, some temporal amplification contours have been computed for the stationary disturbance wave, whose azimuth angle $\varepsilon$= 11.29$^{\circ}$ to 15$^{\circ}$ and for the moving disturbance wave, whose azimuth angle $\varepsilon$= 12$^{\circ}$ to 15$^{\circ}$. The flow instability was observed by using a white titanium tetrachloride gas over rotating disk system. When the numerical results are compared to the present experimental data, the numerical results agree quantitatively, indicating the existence of the selective frequency mechanism.

세종시대 창제된 소간의(小簡儀)의 현대적 개조와 태양의 고도 및 방위각 관측 (Modern Reformation of So-ganui Invented during King Sejong Period and It's Altitude and Azimuth of the Sun Observations)

  • 최현동;김칠영
    • 대한지구과학교육학회지
    • /
    • 제5권2호
    • /
    • pp.139-147
    • /
    • 2012
  • The purpose of this study was to explain how extraordinary the scientific technology or our ancestor was from the modern perspective by remodeling the most unique astronomical instrument, So-ganui (小簡儀), developed in the Sejong Period (世宗時代) after being examined with contemporary and the principles of the science and observational technology would be properly understood and measured directly. When measuring the altitude of the sun and azimuth using So-ganui, it was adjusted with the horizontal coordinate system and measured using Jipyeonghwan (地平環), Ipeunhwan (立運環) and Guyhyeong (窺衡). Based such measuring principles, the measurement accuracy proposed using So-ganui are as follows. The remodeled So-ganui produced approximately ${\pm}0.29$ degrees error on average at high altitude while in measuring the azimuth degrees, there was difference of ${\pm}0.35$ degrees. Since the theoretically, the measurement error for So-ganui was ${\pm}0.5$ degrees, the remodeled So-ganui could accurately measure at the high altitude compared to So-ganui from the Sejong period. In the study, So-ganui, which has disappeared, has been remodeled in modern perspective to be used as the educational material to accurately understand the principles of science and measurement technology from the Sejong period. The findings could contribute to raising the reputation in the astronomical observations from the documents from the Sejong period. Furthermore, this study has materialized the celestial and sky our ancestors have viewed with the observational principles of their times, on the computer screen via a webcam, bringing out interest in the traditional science for the students.

A Method to Suppress False Alarms of Sentinel-1 to Improve Ship Detection

  • Bae, Jeongju;Yang, Chan-Su
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.535-544
    • /
    • 2020
  • In synthetic aperture radar (SAR) based ship detection application, false alarms frequently occur due to various noises caused by the radar imaging process. Among them, radio frequency interference (RFI) and azimuth smearing produce substantial false alarms; the latter also yields longer length estimation of ships than the true length. These two noises are prominent at cross-polarization and relatively weak at co-polarization. However, in general, the cross-polarization data are suitable for ship detection, because the radar backscatter from background sea surface is much less in comparison with the co-polarization backscatter, i.e., higher ship-sea image contrast. In order to improve the ship detection accuracy further, the RFI and azimuth smearing need to be mitigated. In the present letter, Sentinel-1 VV- and VH-polarization intensity data are used to show a novel technique of removing these noises. In this method, median image intensities of noises and background sea surface are calculated to yield arithmetic tendency. A band-math formula is then designed to replace the intensities of noise pixels in VH-polarization with adjusted VV-polarization intensity pixels that are less affected by the noises. To verify the proposed method, the adaptive threshold method (ATM) with a sliding window was used for ship detection, and the results showed that the 74.39% of RFI false alarms are removed and 92.27% false alarms of azimuth smearing are removed.

유리접지면 최적화를 통한 글래스 안테나의 성능 향상 기법 (The Method of Performance Improvement for On-Glass Antennas by Optimizing the Surface of the Window Ground)

  • 안승범;한원근;추호성
    • 한국전자파학회논문지
    • /
    • 제22권2호
    • /
    • pp.140-147
    • /
    • 2011
  • 본 논문에서는 차량 후면 유리에 여러 주파수 대역의 안테나를 집적화할 수 있는 유리접지를 이용한 안테나 급전 방법을 제안하였다. 유리접지가 가능하도록 동축 선로를 유리접지면에 직접 연결할 수 있는 어댑터를 설계하였으며, 차체 접지 방식과 반사 손실을 비교 분석하였다. Azimuth 방향에서 높은 복사 이득을 얻기 위해 유리 접지의 크기와 위치를 최적화 하였으며, 도출된 유리접지면을 이용하여 삼각 패치 형상의 WiBro 안테나를 상용세단의 후면 유리에 인쇄하고 반사 손실과 복사 패턴 성능을 측정하였다. 제안된 유리접지를 이용한 급전 방식은 차체 접지를 이용한 급전 방식과 유사한 반사 손실을 보이며, 2 dB 높은 azimuth 복사 이득이 나타내었다. 측정 결과, 제안된 유리접지면을 이용한 안테나 급전 방식을 이용하면 여러 주파수에서 동작하는 다양한 형태의 온-글래스 안테나를 후면 유리에 효과적으로 적용할 수 있음을 확인하였다.

해양작업지원선(PSV)의 기본설계 및 저항추진 성능 향상을 위한 선형개선 방안 연구 (A Study on the Basic Design for Platform Support Vessel (PSV) and Hull Form Development for Enhancement of Resistance & Propulsion Performance)

  • 염종길;강국진;이영연;이춘주;옥군도
    • 대한조선학회논문집
    • /
    • 제55권3호
    • /
    • pp.196-204
    • /
    • 2018
  • Present paper shows the basic design procedure for platform support vessel operating in open sea, and hull form development process. General design concept considering the operating mission, operating sea condition and shipping freight, etc. is explained shortly. For the hull form design, the initial hull form was designed based on the reference PSVs. The resistance and propulsion test results for the initial hull form with twin Azimuth thruster were analyzed and a few items for improvement were derived. At the next stage, main parameters including Length, Cp-curve, Cb, Lcb, etc. were changed totally for the hull form improvement. Furthermore, 3 different bulbous bows for the fore-body design to reduce the wave resistance and after-body design to reduce the residual resistance were carried out. The best hull form among the 3 fore-bodies with same after-body was selected through the comparison of wave resistance calculation results. Twin ducted Azimuth thruster with the smaller propeller diameter than the former were adapted to increase the propulsive efficiency. The final hull form with the twin Azimuth thruster was evaluated to satisfy more than the target design speed 14 knots in sea condition with sea margin 15% at the 5,000kW BHP through the model test in KRISO.