• Title/Summary/Keyword: axial path

Search Result 126, Processing Time 0.023 seconds

The Study on Fatigue Life Prediction under Biaxial Variable Load (이축 변동하중하에서의 피로수명 예측기법에 관한 연구)

  • 오세종;이현우;전제춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.666-671
    • /
    • 1993
  • Fatigue life prediction under multi-axial variable load were performed for Aluminium 7075-T651 alloy using SAE Notched specimen & Torque tube shaft component specimen. When variable multiaxial load is applied to material, maximum damaged plane(critical plane) change. To clarify the situation, experiment is performed on two different changing load path. For multiaxial fatigue life prediction, miner rule is expanded to critical plane theory. Shear based parameter and Elliptical parameter give better correlation. This suggests that miner rule can be applicable on multi-axial variable load.

  • PDF

A Study on the Weld Line Position Optimization for Hydroforming (Hydroforming을 위한 Weld line 최적배치에 관한연구)

  • 전병희
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • Hydroforming is a metal forming process that enables circular metal tubes to be formed in to the parts with the complex cross section along the curved axial direction. Recently this hydroforming process is largely used for the production of the automotive parts. This paper presents the results of tube bending and hydroforming simulations in cases of the varying weld line positions of the tube. Ten cases of prebending and hydroforming simulations are carried out to find the optiaml weld line position.

  • PDF

Preform Designin Tube by Using the Hydroforming (Hydroforming을 이용한 Tube 의 예비 가공형 설계)

  • 이한남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.39-44
    • /
    • 1999
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths With the availability of advanced machine design and control They offer advantages over stamped sheet metal in lower tooling cost and structural mass The technology is relatively new so that there is no large knowledge base to assist the fundamentals of tube hydroforming technology. The purpose of this paper is found that adaptive bending condition and contact condition for bended part has uniform thickness distribution.

  • PDF

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

Design of roller path for spinning of cylindrical cups of aluminum sheet metal (알루미늄 원통컵 스피닝 작업을 위한 롤러이송경로 설계)

  • Kim, Jong-Ho;Park, Gyu-Ho
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.489-495
    • /
    • 1998
  • Spinning is a chipless forming method for producing axially symmetric parts by using axial-radial motions of a spinning roller. This process has still some advantages in such a view point that a variety of complex shapes which can not be formed in a press can be easily spun at a low cost although it is one of the oldest forming methods for spinning mainly cookware parts for a long time. This study is to investigate the optimum roller path in order to obtain the maximum spinnability in producing cylindrical cups of Aluminum(A1050-H16) sheet metal. Working conditions applicable to any size of blank were predetermined through preliminary spinning tests. 9 types of roller path were proposed and experiments were carried out. The modified involute curve was shown to give the maximum drawing ration and more uniform quality of spun cups as compared with other results of this study. in addition thickness distribution and dimensional accuracy of spun cups were examined and discussed.

  • PDF

Effects of the Leakage Tangential Velocity on the Leakage Flow Path in Shrouded Axial Compressor Cascades (축류압축기 슈라우드 캐비티내의 누수유동 경로에 대한 연구)

  • Sohn, Dae-Woong;Kim, Tong-Beum;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.311-317
    • /
    • 2005
  • Measurements of the leakage flow in the shrouded cavity were performed in axial compressor cascades at $Re=2.6{\times}10^5$. This paper describes the effects of the leakage flow tangential velocity on kinematics of the leakage flow in the shrouded cavity and consequent overall loss and exit flow turning at stator blade row downstream. Flow data and flow visualization images consistently indicate that leakage flow circumferentially migrates 2, 4 and 5 blade passages in the direction of rotation for ${\upsilon}_y/c=0.09$, 0.35 and 0.45, respectively where ${\upsilon}_y$ is the leakage tangential velocity and c is the mainstream velocity. The leakage flow contracts to a jet across the seal-tooth resulting in an increase in the leakage axial velocity-doubling the leakage axial velocity in upstream cavity compared to that in the downstream cavity. Consequently, two flow regions are distinguished before and after the seal-tooth. As increasing the leakage tangential velocity, the overall loss downstream of stator blade row decreases and the exit flow turning in the range of span. from the hub endwall to 15% increases while the decreases in the flow turning from 15% to 30% span is observed.

  • PDF

The Study on the design of Claw Pole Stepping Motor considering Axial flux (축 방향 자속을 고려한 Claw pole 스테핑 모터 설계에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.28-34
    • /
    • 2014
  • A claw pole stepping motor is widely used in various fields such as a compact optical disk drive, computer peripherals, digital cameras, office automation(OA), handheld mobile devices, because it has the suitable structure for compact motor. However 3D analysis is essential for design of Claw pole stepping motor because of axial flux path. Thus, in general, it takes a lot of time in the design of Claw pole motor. In this paper, magnetic equivalent circuit considering axial flux was proposed to reduce design time of Claw pole motor and we has designed by using the magnetic equivalent circuit. In addition, in oder to verify the study, design model was verified by 3D FEM simulation and experiment.

Effective Performance Prediction of Axial Flow Compressors Using a Modified Stage-Stacking Method (단축적법의 개선에 의한 축류압축기의 효과적인 성능예측)

  • Song, Tae-Won;Kim, Jae-Hwan;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1077-1084
    • /
    • 2000
  • In this work, a modified stage-stacking method for the performance prediction of multi-stage axial flow compressors is proposed. The method is based on a simultaneous calculation of all interstage variables (temperature, pressure, flow velocity) instead of the conventional sequential stage-by-stage scheme. The method is also very useful in simulating the effect of changing angles of the inlet guide vane and stator vanes on the compressor operating characteristics. Generalized stage performance curves are used in presenting the performance characteristics of each stage. General assumptions enable determination of flow path data and stage design performance. Performance of various real compressors is predicted and comparison between prediction and field data validates the usefulness of the present method.

Critical Current Properties of Bi-2223/Ag tapes with respect to axial Strain (Bi-2223/Ag 고온초전도 선재의 변형에 따른 임계전류 특성)

  • 하홍수;오상수;하동우;심기덕;김상철;배성우;권영길;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.810-813
    • /
    • 2000
  • In this study, we fabricated Bi-2223/Ag high temperature superconducting tapes using PIT (Powder-In-Tube) process to apply the superconducting magnet, cable and etc. It's inevitable to deform the superconducting tapes with axial strain for application. Therefore, for the characterization of the strain sensitivity of the superconducting properties, the degradation of Bi-2223/Ag tapes due to axial strain were investigated by measuring the critical current as a function of applied tension strain and external magnetic field. The critical current of Bi-2223/Ag tapes were decreased slightly up to 0.3∼0.4% applied strain but, drastically decreased more than these strains. Superconducting filament cores consisted of brittle ceramic fibers were broken easily by the large strain and current path were decreased simultaneously.

  • PDF

Forming Limit Diagram of an Aluminum Tube Through Hydroforming Tests (액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도)

  • Kim J. S.;Lee J. K.;Park J. Y.;Lee D. J.;Kim H. Y.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.514-519
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated enabling to apply the forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The free-bulging and T-forming tests were carried out on the extruded aluminum (A6063) tube specimens with 40.6 mm outer diameter and 2.25 mm thickness. Nine different combinations of internal pressure and axial feed, yielding different strain paths from one another, were taken into consideration in order to induce bursting at various deformation modes. Major and minor strains were automatically measured from deformed grids around the fracture using a stereo-vision-based surface strain measurement system, named ASIAS. The forming limit diagram of the A6063 tube material was successfully obtained. Most of the data points acquired from free bulging and T-forming tests appeared in the range of negative minor strain on the FLD and are mostly located near the strain paths calculated from explicit finite element simulations. The forming limit obtained from tests after pre-tension was considerably lower than that from tests without pre-tension, which showed the strain path-dependency of the forming limit as well known in the sheet forming fold.