• 제목/요약/키워드: axial load effect

검색결과 545건 처리시간 0.023초

P-${\Delta}$ Effects on the Reliability of Offshore Platforms

  • Leon, David-De;Dante Campos
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.31-37
    • /
    • 2003
  • A typical marine platform in the Bay of Campeche is studied from the standpoint of structural reliability, and several characteristics of its deck such as slenderness and diameter/thickness ratios of the legs and actual degree of correlation between some variables are taken into account. The global and local buckling capacities of the deck legs are compared and the correlation coefficient between the critical axial load and the critical moment is assessed in order to validate its influence on the structural reliability. In addition, the influence of the vertical load, and its uncertainty, on the variance of the decks capacity, and latter on, on the platform's failure probability is assessed. The results presented may be used in future studies to further extend and upgrade the first version of the Reference Norm (PEMEX, 2000) and, in the longer term, to improve the current practice in the Design and Requalification of Offshore Marine Platforms in the Bay of Campeche.

  • PDF

선박 이중판의 보강법 연구 (Study on the Reinforced Method of Doubler Plate in Ship Hull Structure)

  • 함주혁
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 2001
  • A study for the structural strength analysis on the doubler plate subjected to the axial, biaxial in-plane compression and shear load has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, non-linear elasto-plastic analysis is introduced. Gap element modeling for contact effect between main plate and doubler is prepared and nonlinear analysis procedures are illustrated based on MSC/N4W . In addition, some design guides are suggested through the consideration of several important effects such as corrosion of main plate, doubler width, doubler length and doubler thickness. Finally theses results are compared with developed design formula based on the buckling strength and general trends and design guides according to the variation of design parameters are discussed.

  • PDF

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험 (The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet)

  • 박재우;홍영균;홍기섭;이성희;최성모
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.311-320
    • /
    • 2009
  • 본 연구에서는 기존 각형 CFT기둥 실험체와 탄소섬유쉬트로 추가구속된 각형 CFT기둥 실험체의 단조압축거동 및 압축내력평가에 관한 실험을 수행하였다. 실험변수는 탄소섬유쉬트 보강겹수와 폭-두께비이며, 실험변수에 따라 총 9개의 실험체를 제작하여 단조압축실험을 수행하였다. 실험을 통하여 기존 CFT 실험체와 탄소섬유쉬트로 구속된 CFT 실험체의 파괴거동, 하중-축변위 곡선, 최대내력, 변형성능을 비교한다. 끝으로 탄소섬유쉬트의 추가구속은 기둥의 국부좌굴을 지연시켰으며 이로 인해 실험체의 최대내력이 상승한 것으로 나타났다.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.

Experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete column subjected to eccentric compression

  • Yu, Feng;Kong, Zhengyi;Li, Deguang;Vu, Quang-Viet
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.151-159
    • /
    • 2020
  • An experimental study on the stress-strain relation of PVC-CFRP confined reinforced concrete columns subjected to eccentric compression was carried out. Two parameters, such as the CFRP strips spacing and eccentricity of axial load, were considered. The experimental results showed that all specimens failed by compressive yield of longitudinal steel bar and rupture of CFRP strips. The bearing capacity of specimen decreases as the eccentricity or the CFRP strips spacing increases. The stress-strain relation of specimens undergoes two stages: parabolic and linear stages. In the parabolic stage, the slope of stress-strain curve decreases gradually as the eccentricity of axial loading increases while the CFRP strips spacing has little effect on the slope of stress-strain curve. For the linear stage, the slope of stress-strain curve decreases as the eccentricity of axial load or the CFRP strips spacing increases. A model for predicting the stress-strain relation of columns under eccentric compression is proposed and it agrees well with various test data.