• Title/Summary/Keyword: axial load effect

Search Result 545, Processing Time 0.025 seconds

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load

  • Wang, Hai;Chen, Chun-Sheng;Fung, Chin-Ping
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.103-124
    • /
    • 2013
  • This paper studies the static and dynamic characteristics of composite plates subjected to an arbitrary periodic load in hygrothermal environments. The material properties of composite plates are depended on the temperature and moisture. The governing equations of motion of Mathieu-type are established by using the Galerkin method with reduced eigenfunction transforms. A periodic load is taken to be a combination of axial pulsating load and bending stress in the example problem. The regions of dynamic instability of laminated composite plates are determined by solving the eigenvalue problems based on Bolotin's method. The effects of temperature rise and moisture concentration on the dynamic instability of laminated composite plates are investigated and discussed. The influences of various parameters on the instability region and dynamic instability index are also investigated. The numerical results reveal that the influences of hygrothermal effect on the dynamic instability of laminated plates are significant.

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Analysis of belt behavior for a metal V-belt CVT (금속 V-벨트 CVT의 벨트거동 해석)

  • 김현수;이재신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.557-566
    • /
    • 1991
  • The metal V-belt behavior of a continuously variable transmission was investigated analytically and experimentally. Numerical results showed that nondimensional belt radial displacement increased in the radial inward direction for the driven pulley, while that of the driver pulley increased for the first 90 degrees of the active are and decreased with the increasing torque load. Experimental results for the belt radial displacement were in good agreement with the theoretical results. However, the absolute magnitude of the belt radial displacement was so small that the change in the belt displacement could not be measured in the experimental range except for the inlet region of the driven pulley, where the radial inward displacement was observed due to the effect of bending moment. The speed ratio-axial force relationship derived from the belt behavior analysis also showed god agreement with the experiment.

An Experimental Study on the Concrete Filled Circular Steel Columns with D/t (지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.461-477
    • /
    • 2016
  • Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

Differential Column Shortening of Plaza zrakyat Office Tower Including Inelastic Effect (비산성효과를 고려한 Plaza Rakyat 오피스동의 기둥부등축소량)

  • 송화철;유은종;정석창;주영규;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.475-480
    • /
    • 1997
  • Highrise concrete buildings are very sensitive to cumulative and differential shortening of their vertical element such as wall and columns. Inelastic deformation due to creep and shrinkage consist of various factors and load history af actual building is very complicated. Therefore, for the accurate prediction and compensation of axial shortening, special efforts in design and construction phase are required to ensure long-term serviceability and strength requirement. In this paper, axial shortening estimation and compensation procedure is presented, which utilized experimentally determined concrete properties and preliminary load history and computerized approach, in case of Plaza Rakyat office tower, 79-story reinforced concrete building under construction in Malaysia.

  • PDF

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc;Kim, Nam-Il;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.137-146
    • /
    • 2017
  • The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.

The Fatigue life evaluation and load history measurement for Bogie frame of locomotive (디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가)

  • Seo, Jung-Won;Kwon, Suck-Jin;Ham, Young-Sam;Kwon, Sung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF