• 제목/요약/키워드: axial forces

검색결과 583건 처리시간 0.022초

Effect of the height of SCSW on the optimal position of the stiffening beam considering axial force effect

  • Azar, B. Farahmand;Hadidi, A.;Khosravi, H.
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.299-312
    • /
    • 2012
  • Stiffened coupled shear walls (SCSW) are under axial load resulting from their weight and this axial load affects the behavior of walls because of their excessive height. In this paper, based on the continuum approach, the optimal position of the stiffening beam on the stiffened coupled shear walls is investigated considering the effect of uniformly distributed axial loads. Moreover, the effect of the height of stiffened coupled shear walls on the optimal position of the stiffening beam has been studied with and without considering the axial force effect. A computer program has been developed in MATLAB and numerical examples have been solved to demonstrate the reliability of this method. The effects of the various flexural rigidities of the stiffening beam on the internal forces and the lateral deflection of the structure considering axial force effect have also been investigated.

경계조건 변화에 의해 발생한 축력을 고려한 세그먼트 라이닝의 균열하중 분석 (Analysis of segment lining cracking load considering axial force by varying boundary condition)

  • 이규필;배규진;장수호;강태성;최순욱
    • 한국터널지하공간학회 논문집
    • /
    • 제16권2호
    • /
    • pp.173-180
    • /
    • 2014
  • 세그먼트 설계시, 축력과 휨모멘트가 주로 고려되는 하중이다. 두개의 하중에서 축력이 모멘트 보다 상대적으로 매우 크기 때문에 전단면이 압축상태에 있으며, 이는 균열 폭을 줄이는 효과가 있다. 그러나 콘크리트 구조물의 사용성 검토에서 축력은 고려하지 않고 있기 때문에 설계는 사용성에 지배되고, 사용성을 만족시키기 위하여 소요 철근량을 증가시키게 된다. 본 논문에서는 축력이 세그먼트의 사용성에 미치는 영향을 시험과 단면해석을 통하여 분석하였다. 세그먼트에 대한 시험을 수행하였으며, 초기균열저항성능에 대하여 고찰하였다. 분석결과 사용성 분석에서 축력을 고려함으로서 더욱 합리적인 설계가 가능한 것을 확인할 수 있었다.

Investigation of earthquake angle effect on the seismic performance of steel bridges

  • Altunisik, Ahmet C.;Kalkan, Ebru
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.855-874
    • /
    • 2016
  • In this paper, it is aimed to evaluate the earthquake angle influence on the seismic performance of steel highway bridges. Upper-deck steel highway bridge, which has arch type load bearing system with a total length of 216 m, has been selected as an application and analyzed using finite element methods. The bridge is subjected to 1992 Erzincan earthquake ground motion components in nineteen directions whose values range between 0 to 90 degrees, with an increment of 5 degrees. The seismic weight is calculated using full dead load plus 30% of live load. The variation of maximum displacements in each directions and internal forces such as axial forces, shear forces and bending moments for bridge arch and deck are attained to determine the earthquake angle influence on the seismic performance. The results show that angle of seismic input motion considerably influences the response of the bridge. It is seen that maximum arch displacements are obtained at X, Y and Z direction for $0^{\circ}$, $65^{\circ}$ and $5^{\circ}$, respectively. The results are changed considerably with the different earthquake angle. The maximum differences are calculated as 57.06%, 114.4% and 55.71% for X, Y and Z directions, respectively. The maximum axial forces, shear forces and bending moments are obtained for bridge arch at $90^{\circ}$, $5^{\circ}$ and $0^{\circ}$, respectively. The maximum differences are calculated as 49.12%, 37.37% and 51.50%, respectively. The maximum shear forces and bending moments are obtained for bridge deck at $0^{\circ}$. The maximum differences are calculated as 49.67%, and 49.15%, respectively. It is seen from the study that the variation of earthquake angle effect the structural performance of highway bridges considerably. But, there is not any specific earthquake angle of incidence for each structures or members which increases the value of internal forces of all structural members together. Each member gets its maximum value of in a specific angle of incidence.

수평력과 축력을 받는 강골조의 최대수평내력 평가 (Evaluation of the Lateral Ultimate Strength of Steel Moment Resisting Frames under Axial and lateral Forces)

  • 김종성
    • 한국강구조학회 논문집
    • /
    • 제11권1호통권38호
    • /
    • pp.69-78
    • /
    • 1999
  • 구조물이 지진과 같은 수평력을 받으면 골조의 기둥은 횡이동을 하게 되고 이 횡이동이 크면 골조는 불안정 좌굴, 초기항복, 골조전체의 강성이 감소하게 된다. 본 연구에서는 이러한 골조의 기둥이 횡이동에 의해 수평력과 축력을 동시에 받는 강골조를 대상으로하여 골조강성의 저하, 보와 기둥의 상대적인 강성비, 세장비효과, 하중조건 등을 고려한 다양한 해석모델을 상정하여 수치해석을 실시했다. 그 해석결과를 분석하여 강골조의 최대수평내력을 평가하고, 기둥의 세장비 제한치를 구하는 절차에 대해서도 검토한다. 해석에 있어서는, 골조의 $P-{\Delta}$효과를 고려해서 기발표된 저자의 탄소성해석법을 이용하여 일정한 축력하에 점증의 수평력을 골조에 가했으며, 최대내력후의 해법으로서 일반역행렬을 응용했다.

  • PDF

Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.69-82
    • /
    • 2020
  • In this paper, a new explicit analytical formula is derived for the critical buckling load of Double Walled Carbon Nanotubes (DWCNTs) embedded in Winkler elastic medium without taking into account the effects of the nonlocal parameter, which indicates the effects of the surrounding elastic matrix combined with the intertube Van der Waals (VdW) forces. Furthermore, we present a model which predicts that the critical axial buckling load embedded in Winkler, Pasternak or Kerr elastic medium under axial compression using the nonlocal Donnell shell theory, this model takes into account the effects of internal small length scale and the VdW interactions between the inner and outer nanotubes. The present model predicts that the critical axial buckling load of embedded DWCNTs is greater than that without medium under identical conditions and parameters. We can conclude that the embedded DWCNTs are less susceptible to axial buckling than those without medium.

마찰을 고려한 이중 오프셋 등속조인트의 축력 해석에 관한 연구 (Analytic Study on the Axial Forces of a Double Offset Constant Velocity Joints in Consideration of Friction Effect)

  • 배병철
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.120-127
    • /
    • 2008
  • The constant velocity joint(CVJ) used for transmitting torque to the front wheels is an important part in automotive drive system. There are several types of constant velocity joints. Typically, they are classified by fixed and plunging constant velocity joints. The axial force generated in plunging constant velocity joints influences significantly the noise, vibration and harshness. For heaps of time, many constant velocity joint markers have been studying and developing a valid method to reduce the axial force and extensive tests have been carried out on rigs. This paper presents the analysis method to predict the axial force of a double offset constant velocity joint(DOJ), a kind of plunging constant velocity joint, and the influence of ball-cage dimension tolerance on the axial force.

전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석 (Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

엔드밀 가공의 절삭력 예측 및 실험 (Prediction and Experiments of Cutting Forces in End Milling)

  • 이신영;임용묵
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.9-15
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. The specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments. The results showed good agreement and from that we could predict reasonably the cutting forces in end milling.

Comparison of the dynamic responses of $G\ddot{u}lburnu$ Highway Bridge using single and triple concave friction pendulums

  • Yurdakul, Muhammet;Ates, Sevket;Altunisik, Ahmet Can
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.511-525
    • /
    • 2014
  • The main object of this study is to determine and compare the structural behavior of base isolated long span highway bridge, $G\ddot{u}lburnu$ Highway Bridge, using single concave friction pendulum (SCFP) and triple concave friction pendulum (TCFP). The bridge is seismically isolated in the design phase to increase the main period and reduce the horizontal forces with moments using SCFP bearings. In the content of the paper, firstly three dimensional finite element model (FEM) of the bridge is constituted using project drawings by SAP2000 software. The dynamic characteristics such as natural frequencies and periods, and the structural response such as displacements, axial forces, shear forces and torsional moments are attained from the modal and dynamic analyses. After, FEM of the bridge is updated using TCFP and the analyses are performed. At the end of the study, the dynamic characteristics and internal forces are compared with each other to extract the TCFP effect. To emphasize the base isolation effect, the non-isolated structural analysis results are added to graphics. The predominant frequencies of bridge non-isolated, isolated with SCFP and isolated with TCFP conditions decreased from 0.849Hz to 0.497Hz and 0.338Hz, respectively. The maximum vertical displacements are obtained as 57cm, 54cm and 44cm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively. The maximum vertical displacement reduction between isolated with TCFP bearing and isolated with SCFP bearing bridge is %23. Maximum axial forces are obtained as 60619kN, 18728kN and 7382kN, maximum shear forces are obtained as 23408kN, 17913kN and 16249kN and maximum torsional moments are obtained as 24020kNm, 7619kNm and 3840kNm for non-isolated, isolated with SCFP and isolated with TCFP conditions, respectively.

Study on mechanical behaviors of large diameter shield tunnel during assembling

  • Feng, Kun;Peng, Zuzhao;Wang, Chuang;He, Chuan;Wang, Qianshen;Wang, Wei;Cao, Songyu;Wang, Shimin;Zhang, Haihua
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.623-635
    • /
    • 2018
  • In order to study the mechanical behavior of shield tunnel segments during assembly stage, the in-situ tests and FDM numerical simulation were conducted based on the Foguan Shiziyang Tunnel with large cross-section. Analysis for the load state of the assembling segments in different assembly steps as well as the investigation for the changing of inner forces and longitudinal stress of segments with assembling steps were carried out in this paper. By comparing the tested results with the simulated results, the conclusions and suggestions could be drawn as follows: (1) It is the most significant for the effects on axial force and bending moment caused by the assembly of adjacent segment, followed by the insertion of key segment while the effects in the other assembly steps are relative smaller. With the increasing value of axial force, the negative bending moment turns into positive and remains increasing in most monitored sections, while the bending moment of segment B1and B6 are negative and keeping increasing; (2) The closer the monitored section to the adjacent segments or the key segment, the more significant the internal forces response, and the monitored effects of key segment insertion are more obvious than that of calculation; (3) The axial forces are all in compression during assembling and the monitored values are about 1.5~1.75 times larger than the calculated values, and the monitored values of bending moment are about 2 times the numerical calculation. The bending moment is more sensitive to the segments assembly process compared with axial force, and it will result in the large bending moment of segments during assembling when the construction parameters are not suitable or the assembly error is too large. However, the internal forces in assembly stage are less than those in normal service stage; (4) The distribution of longitudinal stress has strong influence on the changing of the internal forces. The segment side surface and intrados in the middle of two adjacent jacks are the crack-sensitive positions in the early assembly stage, and subsequently segment corners far away from the jacks become the crack-sensitive parts either.