• Title/Summary/Keyword: axial extension

검색결과 106건 처리시간 0.028초

주관절 운동의 상완·전완좌표계 타당도 및 굴곡/신전과 회내/회외의 상호작용 (The Validity Test of Upper·Forearm Coordinate System and the Exploratory Analysis of the Interactive Effect between Flexion/Extension and Pronation/Supination during Elbow Joint Motion)

  • 김진욱
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.117-127
    • /
    • 2010
  • The axes of upper forearm coordinate system have been considered as principal axis of each segment which was component of elbow joint. The purpose of this study was to verify whether the mean direction(principal axis) of instantaneous axes of rotation for pure flexion/extension motion coincided with the flexion/extension axis of upper forearm coordinate system. The same procedure was done for pronation/supination motion. Furthermore, it was tested indirectly that there was an interaction effect between the two rotational motions. The results showed that most segment coordinate axes statistically were not consistent with the mean directions of flexion/extension and pronation/supination axes of rotation. From the results, it would be concluded that the ISB coordinate systems was proved to be a little valid for human movement analysis. There also was an effect of pronation/supination angles on flexion/extension motion.

A Biomechanical Comparison among Three Surgical Methods in Bilateral Subaxial Cervical Facet Dislocation

  • Byun, Jae-Sung;Kim, Sung-Min;Choi, Sun-Kil;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • 제37권2호
    • /
    • pp.89-95
    • /
    • 2005
  • Objective: The biomechanical stabilities between the anterior plate fixation after anterior discectomy and fusion (ACDFP) and the posterior transpedicular fixation after ACDF(ACDFTP) have not been compared using human cadaver in bilateral cervical facet dislocation. The purpose of this study is to compare the stability of ACDFP, a posterior wiring procedure after ACDFP(ACDFPW), and ACDFTP for treatment of bilateral cervical facet dislocation. Methods: Ten human spines (C3-T1) were tested in the following sequence: the intact state, after ACDFP(Group 1), ACDFPW(Group 2), and ACDFTP(Group 3). Intervertebral motions were measured by a video-based motion capture system. The range of motion(ROM) and neutral zone(NZ) were compared for each loading mode to a maximum of 2.0Nm. Results: ROMs for Group 1 were below that of the intact spine in all loading modes, with statistical significance in flexion and extension, but NZs were decreased in flexion and extension and slightly increased in bending and axial rotation without significances. Group 2 produced additional stability in axial rotation of ROM and in flexion of NZ than Group 1 with significance. Group 3 provided better stability than Group 1 in bending and axial rotation, and better stability than Group 2 in bending of both ROM and NZ. There was no significant difference in extension modes for the three Groups. Conclusion: ACDFTP(Group 3) demonstrates the most effective stabilization followed by ACDFPW(Group 2), and ACDFP(Group 1). ACDFP provides sufficient strength in most loading modes, ACDFP can provide an effective stabilization for bilateral cervical facet dislocation with a brace.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식 (The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids)

  • 서영태
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

현장 재하시험을 통한 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따른 하중분담거동 분석 (Analysis of Load Distribution Behavior in Vertical Extension Remodeling from Stiffness of Existing and Reinforcing Pile by Load Test)

  • 김석중;왕성찬;한진태
    • 한국지반공학회논문집
    • /
    • 제36권8호
    • /
    • pp.61-72
    • /
    • 2020
  • 수직증축 리모델링시 상부 구조물의 구조적 안정성 확보를 위해서는 기초의 안정성이 우선적으로 확보되어야 한다. 수직증축형 리모델링 구조기준 고시(2014)에 따라, 수직증축시 기존 말뚝과 보강 말뚝의 강성에 따라 상부 하중을 분담하여 지지한다. 하지만, 국내에서는 증축시 활용할 수 있는 기초 보강공법 등에 대하여 연구 주제가 집중되어 있으며, 기존 기초와 보강 기초의 강성 차이에 의한 하중 분담율에 대한 연구는 미비하다. 따라서, 본 연구에서는 현장 재하시험을 통해 수직증축 리모델링시 기존 말뚝과 보강 말뚝의 강성에 따른 하중 분담 거동에 대하여 분석을 수행하였다. 서로 강성이 다른 일반 및 파형 마이크로파일을 시공하여 기존 말뚝과 보강 말뚝을 모사하고, 각각의 말뚝에 대한 재하시험을 수행하여 각 말뚝의 강성을 산정하였다. 그 후, 기존 말뚝과 보강 말뚝 두부를 연결하는 기초판을 타설하고 기초판 상부에 하중을 재하함으로써 기존 말뚝 및 보강 말뚝의 강성 차이에 따른 하중 분담 거동을 분석하였다. 그 결과, 파형 마이크로파일의 강성이 일반 마이크로파일에 비해 약 2.5배 크게 산정되었으며, 이에 비례하여 하중을 분담하는 것을 확인하였다.

피험자내 설계에 의한 회전축자료의 비교연구 (Comparative Study on Axes of Rotation Data by Within-Subjects Designs)

  • 김진욱
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.873-887
    • /
    • 2013
  • 실험에서 처리 간 평균반응의 비교를 위해서 많이 사용되는 방법은 분산분석이다. 반응변수가 왓슨분포로부터 추출된 것이라 가정한 축자료의 경우에 평균방향의 비교를 위한 분석방법은 많지 않다. 본 연구의 목적은 운동역학에서 관절의 운동을 기술하기 위해서 많이 사용되는 회전축의 평균방향 비교를 위해서 분산분석을 수행하는 것이다. 이는 피험자내 설계에 의한 분산분석으로 피험자내 요인이 하나인 경우와 두 개의 경우로 나누어 분석하였다. 실제 분석에 사용된 자료는 슬관절의 굴곡/신전 회전축과 주관절의 굴곡/신전, 회내/회외 회전축이다. 본 연구를 통해 관절회전운동의 적절한 비교분석을 수행할 수 있었으며 이러한 분석방법은 다양한 실험설계에 의한 축자료에 적용시킬 수 있을 것이다.

원환의 진동에서 축력과 중심선의 신장이 진동수에 미치는 영향 (On the effects of axial prestress and central line extension on the flexural vibration of a circular ring)

  • 김광식;김강년
    • 오토저널
    • /
    • 제6권2호
    • /
    • pp.39-46
    • /
    • 1984
  • There are various ringshaped automotive and machine parts and the study about the characteristics of ring are the important basis of the quality control and performance improvement of outer race of ball bearing, railwheel, ring gear, piston ring, and other ringshaped seals, etc. In this study, the effect of prestress which arise inevitably during the fitting of the ring shape parts and the effect of central line extension/contraction on the vibrational characteristics of ring are verified. Although many studies are made on the vibration of ring, the study about prestress and extension were rather scarce and rare. As a result of the study, a series of frequency formulas are derived. The result of this study can be utilized in the improvement of design as well as in the quality control during the fitting work.

  • PDF

플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지 (A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism)

  • 최기봉
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.