• Title/Summary/Keyword: avoidance-based

Search Result 1,041, Processing Time 0.032 seconds

Development of A New Efficient Method for Controlling Robot Motion at and near Singularities (특이점 부근의 로봇운동을 효과적으로 제어하기 위한 새로운 방법 개발)

  • 정원지;최은재;홍대선;서영교;홍형표
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • This paper presents a new motion control strategy for singularity avoidance in 6 DOF articulated robot manipulators, based on a speed limiting algorithm for joint positions and velocities. For a given task, the robot is controlled so that the joints move with acceptable velocities and positions within the reachable range of each joint by considering the velocity limit. This paper aims at the development of a new efficient method to control robot motion near and at singularities. The proposed method has focused on generating the optimal joint trajectory for a Cartesian end-effector path within the speed limit of each joint by using the speed limit avoidance as well as the acceleration/deceleration scheme. The proposed method was verified using MATLAB-based simulations.

Safety-Economic Decision Making Model of Tropical Cyclone Avoidance Routing on Oceans

  • Liu, Da-Gang;Wang, De-Qiang;Wu, Zhao-Lin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.144-153
    • /
    • 2006
  • In order to take TC forecasts from different observatories into consideration, and make quantitative assessment and analysis for avoiding TC routes from the view of safety and cost, a new safe-economic decision making method of TC avoidance routing on ocean was put forward. This model is based on combining forecast of TC trace based on neural networks, technical method to determine the future TC wind and wave fields, technical method of fuzzy information optimization, risk analysis theory, and meteorological-economic decision making theory. It has applied to the simulation of MV Tianlihai's shipping on ocean. The result shows that the model can select the optimum plan from 7 plans, the selected plan is in accordance with the one selected by experienced captains.

  • PDF

Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot

  • Sohn, Sook-Yung;Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.831-833
    • /
    • 2004
  • In this paper, an obstacle avoidance algorithm is proposed for a network-based robot considering network delay by distribution. The proposed algorithm is based on the VFH(Vector Field Histogram) algorithm, and for the network-based robot system, in which it is assumed robot localization information is transmitted through network communication. In this paper, target vector for the VFH algorithm is estimated through the robot localization information and the measurement of its delay by distribution. The delay measurement is performed by time-stamp method. To synchronize all local clocks of the nodes distributed on the network, a global clock synchronization method is adopted. With the delay measurement, the robot localization estimation is performed by calculating the kinematics of the robot. The validation of the proposed algorithm is performed through the performance comparison of the obstacle avoidance between the proposed algorithm and the existing VFH algorithm on the network-based autonomous mobile robot.

  • PDF

Obstacle Avoidance Algorithm Development for Network-Based Autonomous Mobile Robots (네트워크 기반 자율이동로봇의 장애물 회피 알고리즘 개발)

  • Sohn, Soo-Kyung;Kim, Joo-Min;Kim, Hong-Ryeol;Kim, Dae-Won;Yang, Kwang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2435-2437
    • /
    • 2004
  • In this paper, an obstacle avoidance algorithm is proposed for a network-based robot considering network delay by distribution. The proposed algorithm is based on the VFH(Vector Field Histogram) algorithm, and for the network-based robot system, in which it is assumed robot localization information is transmitted through network communication. In this paper, target vector for the VFH algorithm is estimated through the robot localization information and the measurement of its delay by distribution. The delay measurement is performed by time-stamp method. To synchronize all local clocks of the nodes distributed on the network, a global clock synchronization method is adopted. With the delay measurement, the robot localization estimation is performed by calculating the kinematics of the robot. The validation of the proposed algorithm is performed through the performance comparison of the obstacle avoidance between the proposed algorithm and the existing VFH algorithm on the network-based autonomous mobile robot.

  • PDF

AN ALGORITHM FOR COLLISION AVOIDANCE FOR ROBOTS WITH WORK ING SPACE

  • Lee, G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.759-762
    • /
    • 1991
  • In this paper an algorithm is presented which serves for collision avoidance between robots with working space. The method is based on the concept of a hierarchical coordinator and permits an on-line application. Computing possible collision points a collision_free trajectory for the robot with no right_of_way precedence is generated. The computations are based on the states of the robots concerned including their practicable accelerations and velocities.

  • PDF

A Study on the Seaborne Collision Avoidance System Using the Airborne CAS

  • KANG, Jeong-gu;PARK, Jin-Soo;PARK, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.44 no.2
    • /
    • pp.65-72
    • /
    • 2020
  • Mankind has been using ships for more than 5,000 years and has developed a range of related technologies. However, despite such a long history, compared to aircraft with a history of approximately one century, the pace of progress has been markedly slow. Even though technological progress of ships or the installation of various navigation equipment have been achieved, seaborne collisions have occurred quite frequently. This study analyzed the TCAS( Traffic Collision Avoidance System) that has contributed to the prevention of collisions with other transport methods including aircraft to suggest a collision avoidance system that can be deployed for ships. To apply the technologies applied to aircraft that move in 3D to ships that move in 2D, the difference in the operational environment between the two modes was analyzed to identify elements that need to be applied to ships. The suggested display of data on the collision prevention system is one that manipulates the augmented reality display device used in automobiles that over the past few years has undergone rapid development. Based on the presentation of technological elements that need to be considered when adopting the SCAS or the Seaborne Collision Avoidance System as suggested in this study, the authors hope to contribute to the prevention of collisions.

Development of a Dynamic Collision Avoidance Algorithm for Indoor Tracking System Based on Active RFID

  • Han, Se-Kyung;Choi, Yeon-Suk;Iwai, Masayuki;Sezaki, Kaoru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.736-752
    • /
    • 2010
  • We propose a novel collision-avoidance algorithm for the active type RFID regarding an indoor tracking system. Several well-known collision avoidance algorithms are analyzed considering the adequacy for the indoor tracking system. We prove the superiority of the slotted ALOHA in comparison with CSMA for short and fixed length packets like an ID message in RFID. Observed results show that they are not applicable for active type RFID in terms of energy efficiency. Putting these all together, we propose a dedicated collision avoidance algorithm considering the unique features of the indoor tracking system. The proposed method includes a scheduled tag access period (STAP) as well as a random tag access period (RTAP) to address both of the static and dynamic characteristics of the system. The system parameters are determined through a quantitative analysis of the throughput and energy efficiency. Especially, some mathematical techniques have been deployed to obtain the optimal slot count for RTAP. Finally, simulation results are provided to illustrate the performance of the proposed method with variations of the parameters.

Development of Lane Change System considering Acceleration for Collision Avoidance (충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발)

  • Kang, Hyunkoo;Lee, Donghwi;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

A Study on Mariners' Standard Behavior for Collision Avoidance (1) - A concept on modeling for collision avoidance based on human factors -

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2007
  • Human factors have been considered the primary reason of marine accidents. Especially, the collision between vessels is mostly mused by human behavior. However, there have not been many researches to clarify the reason of marine accidents mused by human factors quantitatively. In order to understand human factors and to enhance safe navigation systematically, using a full mission ship-handling simulator, we've investigated the characteristics of avoiding behavior taken by mariners. Further in order to apply the characteristics more widely and effectively, it's necessary to formulate the standard behavior for ship-handling in the condition of collision avoidance. Is this study, therefore, we intended to propose the concept to model the mariner's standard behavior on the handling of collision avoidance as the first step. As a result, we confirmed the contents of information processing in ship-handling that mariner's generally taking to avoid collision.

Strategies of Collision Avoidance with Moving and Stationary Human Obstacles during Walking (보행 시 인간 장애물의 동적·정적 상태에 따른 충돌회피전략)

  • Lee, Yeon-Jong;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Objective: The aim of this study was to investigate the strategies for avoiding moving and stationary walker using body segments during walking. Method: Ten healthy young adults (10 males, age: $24.40{\pm}0.49yrs$, height: $175.80{\pm}5.22cm$, body mass: $70.30{\pm}5.22kg$) participated in this study. Each participant was asked to perform a task to avoid collisions with another walker who was moving or stationary during walking on the 10 m walkway. Both walkers were performed at natural self-selected walking speed. Results: Medio-lateral avoidance displacement of the trunk and the pelvis were significantly increased when avoiding a stationary walker (p<.05). There were no significant differences in medio-lateral center of mass trajectory. Rotation angle of trunk, pelvis and foot on the vertical axis were significantly increased when avoiding a stationary walker (p<.05). Conclusion: Based on our results, when another walker moves continuously, the walker recognizes another walker as the object of social interaction and performs the avoidance strategies while expecting the cooperative distance. On the other hand, when another walker is stopped, it is determined that the walker has an obligation to avoid, and the walker performs a relatively safer avoidance strategy.