• Title/Summary/Keyword: aviation safety

Search Result 752, Processing Time 0.023 seconds

A Scheme of Crisis Management for National Aviation Safety (국가차원의 항공안전위기관리 방안)

  • Kim, Yeon-Myung;Hong, Seok-Jin;An, Hyuck-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.27-34
    • /
    • 2005
  • To develop a crisis management for aviation safety, this study has defined crisis management includes risk management which is eliminates or lowers risks prior to accidents and emergency response after the accidents. A risk management model was developed through wide surveys for aviation hazards including aircraft operation, ATC, and airport operation, etc. The crisis management could not be effective by only using a pre-active risk management. It should also conduct using a pro-active response system. In addition, this study also suggested schemes of development for national emergency response through case studies of aircraft accidents.

Analysis of Human Errors in a Commercial Aircraft Air Data System and their Influence on Air Safety (커머셜 항공기 에어 데이터 시스템의 인적오류 분석과 안전에 미치는 영향에 관한 연구)

  • Park, Se-Jong;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.87-93
    • /
    • 2020
  • A key component of aviation safety is to eliminate the errors in commercial aircraft air data systems to ensure stable aviation operation. Although the technical aspects such as the maintenance and inspection play a pertinent role, human errors are expected to have a similar or even larger influence on the aviation safety. Aviation maintenance and inspection tasks are often performed by a complex organization, in which individuals perform a variety of tasks in an environment involving time pressure, sparse feedback, and complex conditions. These situational characteristics, combined with the general tendency of human error, may lead to various types of errors, which may have critical consequences such as accidents and loss of life. For instance, if an amber message "IAS DISAGREE" is displayed on the primary flight display while the aircraft is rolling on the runway to takeoff, the crew immediately performs a rejected takeoff operation and troubleshoots the air data system. This paper proposes alternative approaches to address the occurrence of defects due to the human factors involved in the practical processes of the air data system of commercial aircraft.

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

A Study on the Improvement of Maintaining Temperature of Aviation Dangerous Goods (항공 운송 위험물의 정온 유지 개선방안)

  • Se-Cheol Shin;Hyung-Hwan An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2023
  • According to the study and experiments performed on the Improvement of Maintaining Temperature of Aviation Dangerous Goods, a conclusion was drawn that clear technical guidelines should be established from the design and assembly stage of temperature-controlled packaging, taking into account actual transportation environment. In particular, profiles consisting of only two types of summer and winter are difficult to adjust flexibly in transportation process with severe weather and temperature changes such as spring and fall. To this end, there is a need to establish a compromise profile configuration for summer and winter. It was also found that the condition of the refrigerant, temperature control, and the speed of the packaging operation have a significant impact on maintaining constant temperature. Therefore, all packing operations need to be completed within a short period of time in the environment close to the target temperature. The current packing instructions provided by packaging manufacturers do not provide precise instructions on post-conditioning, but the experiments in this study confirmed that post-conditioning is very important for maintaining the target temperature, so it is necessary to provide precise legal packing technical instructions.

A Research on Knowledge Sharing among Air Transportation Professionals (이직종간 지식공유 활성화 방안에 대한 연구 : 항공운항 분야를 중심으로)

  • Kim, Wan-Hyun;Park, Sang-Bum
    • The Journal of Industrial Distribution & Business
    • /
    • v.8 no.6
    • /
    • pp.61-73
    • /
    • 2017
  • Purpose - Aviation control, navigation, and aircraft control in the air transportation area are very specialized. Each part is in progress for safety, efficiency, automation, and further. On the other hand co-work among each part including knowledge sharing has been inattentive for many reasons. The purpose of this research is to show how practicians and professionals in the air transportation area perceive the issue of knowledge sharing and to recall the necessity of knowledge sharing in the area. And we try to find ways to activate the knowledge sharing in the area. Research design, data, methodology - For the research, we inquired into whether practicians and professionals think knowledge sharing can effect safe aviation positively or not and what steps are necessary to activate knowledge sharing in the area. We adopted survey method using questionnaires for current practicians and interview for specialists. The survey and interview results were analyzed using regression analysis and AHP method. The interview for specialists and analyzing the results using AHP was to investigate what are the precedence factors to activate the knowledge sharing. Results - First, practicians perceive that knowledge sharing will affect aviation safe positively. Second objective knowledges such as, tower air traffic control procedure of aviation control area, flight principle and structure of aircraft control area, instrument landing system of navigation area, for knowledge sharing of each area were identified. Also the precedence factors such as, knowledge absorbability of personal factor, personal expectation of result of expectation factor, leadership of management of Structure factor, method of knowledge spread of application factor for knowledge sharing were found. Conclusions - Knowledge sharing for practicians and professionals in the aviation area is very important especially from the perspective of safety. However, for various many reasons including the environment of each special area that focusing on their own area, knowledge sharing has not been emphasized. We found that practicians in the area feel that knowledge sharing is necessary and helpful. For it, each practician's active participation is the most important and many ways such as chatting room to share knowledge are to be developed. And the organization culture should be changed to encourage knowledge sharing.

A Study on Aviation Safety and Third Country Operator of EU Regulation in light of the Convention on international Civil Aviation (시카고협약체계에서의 EU의 항공법규체계 연구 - TCO 규정을 중심으로 -)

  • Lee, Koo-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.1
    • /
    • pp.67-95
    • /
    • 2014
  • Some Contracting States of the Chicago Convention issue FAOC(Foreign Air Operator Certificate) and conduct various safety assessments for the safety of the foreign operators which operate to their state. These FAOC and safety audits on the foreign operators are being expanded to other parts of the world. While this trend is the strengthening measure of aviation safety resulting in the reduction of aircraft accident. FAOC also burdens the other contracting States to the Chicago Convention due to additional requirements and late permission. EASA(European Aviation Safety Agency) is a body governed by European Basic Regulation. EASA was set up in 2003 and conduct specific regulatory and executive tasks in the field of civil aviation safety and environmental protection. EASA's mission is to promote the highest common standards of safety and environmental protection in civil aviation. The task of the EASA has been expanded from airworthiness to air operations and currently includes the rulemaking and standardization of airworthiness, air crew, air operations, TCO, ATM/ANS safety oversight, aerodromes, etc. According to Implementing Rule, Commission Regulation(EU) No 452/2014, EASA has the mandate to issue safety authorizations to commercial air carriers from outside the EU as from 26 May 2014. Third country operators (TCO) flying to any of the 28 EU Member States and/or to 4 EFTA States (Iceland, Norway, Liechtenstein, Switzerland) must apply to EASA for a so called TCO authorization. EASA will only take over the safety-related part of foreign operator assessment. Operating permits will continue to be issued by the national authorities. A 30-month transition period ensures smooth implementation without interrupting international air operations of foreign air carriers to the EU/EASA. Operators who are currently flying to Europe can continue to do so, but must submit an application for a TCO authorization before 26 November 2014. After the transition period, which lasts until 26 November 2016, a valid TCO authorization will be a mandatory prerequisite, in the absence of which an operating permit cannot be issued by a Member State. The European TCO authorization regime does not differentiate between scheduled and non-scheduled commercial air transport operations in principle. All TCO with commercial air transport need to apply for a TCO authorization. Operators with a potential need of operating to the EU at some time in the near future are advised to apply for a TCO authorization in due course, even when the date of operations is unknown. For all the issue mentioned above, I have studied the function of EASA and EU Regulation including TCO Implementing Rule newly introduced, and suggested some proposals. I hope that this paper is 1) to help preparation of TCO authorization, 2) to help understanding about the international issue, 3) to help the improvement of korean aviation regulations and government organizations, 4) to help compliance with international standards and to contribute to the promotion of aviation safety, in addition.

Structural safety factor for small unmanned aircraft (소형 무인기 구조 안전계수)

  • Kim, Sung-Joon;Lee, Seung-gyu;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.12-17
    • /
    • 2017
  • Manned aircraft structural design is based on structural safety factor of 1.5, and this safety factor is equivalent to a probability of failure of between 10-2 and 10-3. The target failure probability of FARs is between 10-6 and 10-9 per flight according to aircraft type. NATO released STANAG 4703 to established the airworthiness requirements for small UAV which is less than 150kg. STANAG 4703 requires the Target Level of Safety according to MTOW. The requirements of failure probability for small UAV is between 10-4 and 10-5. In this paper, requirements of airworthiness certification for small UAV were investigated and the relationship of safety factors to the probability of structural failure is analyzed to reduce measure of safety factor and structural weight of unmanned aircraft.

An Study on Propensity, Safety Behavior and Aeronautical Decision-making of Student Majoring in Flight Operation (항공운항학과 재학생의 성향, 안전행동, 비행 의사결정에 관한 연구)

  • Kim, Geun Su;Kim, Ha Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.3
    • /
    • pp.52-60
    • /
    • 2020
  • The purpose of this study was to analyze the effects of Student Majoring in Flight Operation's propensity, safety behavior and aeronautical decision-making. According to the analysis results, First, parents' criticism of perfectionism factor is found to have a negative effect on safety behavior. Second, student pilot's proactive personality has a positive impact on both safety participation behavior and safety compliance behavior. Third, both safety participation behavior and safety compliance behavior are found to have a significant effect on situation awareness, solution generation and solution implementation of decision making stages. Therefore, this study is intended to provide useful basic data that can be applied to studies such as appropriate psychological counseling, optimal training directions and teaching methods in order to cultivate excellent human resources through safe flight training.

Development of Safety Management System for Moving Vehicles in Airside (Airside 이동체 안전관리 기술 개발)

  • Han, Jae-Hyun;Kim, Yo-Sik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2008
  • As the number of passengers and the amount of cargo is getting increased, the traffic of aircraft and moving vehicle at an airport is getting busy. Especially, due to the heavy traffic of moving vehicles in the area of airside, the safety management of them is getting important. The study has been performed for suggesting improved methods in order to reduce safety accidents between aircraft and moving vehicles by introducing a safety management system for moving vehicles in airside of an airport. In order to improve the level of safety with the efficient management of moving vehicles in airside, the analysis of the domestic and international trends of the related technology and regulations has been performed. As a result, the conceptual design of safety management system has been suggested by utilizing the location information technology and four layers (hardware, network, middleware and application) approaches of safety management system.

  • PDF

Safety Assessment Analysis of the Rotorcraft Fuel Pumps (회전익기 연료펌프 안전성 평가 분석)

  • Lee, Junghoon;Park, Jang-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.21-25
    • /
    • 2013
  • The system and components for aircraft are required the design data on which the safety requirements are properly reflected for their certification. This paper presents the procedure and results of a safety assessments analysis for the rotorcraft fuel pumps in oder to confirm and verify them. The fuel pumps design assessment must be performed, including a detailed failure analysis to identify all failures that will prevent continued safe flight or safe landing. In order to assess the fuel pumps design safety, not only system safety hazard analysis and but FTA(Fault Tree Analysis) for proofing the safety objective of the fuel pumps are performed. The results of the safety assessment for fuel pumps validate that no single failure or malfunction could result in catastrophic failure or critical accidents of the rotorcraft.