• Title/Summary/Keyword: averaged method

검색결과 1,127건 처리시간 0.026초

한국인 평균 두형 실험더미의 제작과 머리전달함수의 측정 (Development of Experimental Dummy and Measurements of Head-Related Transfer Functions (HRTF) for Averaged Korean Head Shape)

  • 이두호;안태수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.669-673
    • /
    • 2008
  • Based on the averaged Korean head shapes that are the results of digital Korean project by KISTI and Catholic university, experimental apparatus of head dummies of Korean male and female are developed in order to measure head-related transfer functions (HRTF) by using a reverse engineering and rapid prototyping techniques. For the Korean dummies, HRTFs are measured using the substitution method over 12 kHz frequency bands. At every azimuth angle $15^{\circ}$ HRTFs are measured for elevation angles $-30^{\circ}$, $0^{\circ}$, and $30^{\circ}$. The measured HRTFs are compared with those of KEMAR (Knowles Electronic Manikin for Acoustic Research) dummy head, which shows a little different frequency characteristic beyond 2 kHz frequency band.

  • PDF

재생기를 가진 실린더내의 왕복유동에 관한 열전달 (Heat Transfer of Oscillating Flow in a Cylinder with Regenerator)

  • 김진호;이재헌;강병하
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1758-1769
    • /
    • 1995
  • The heat transfer of oscillating flow in a cylinder with regenerator was investigated by the moving boundary technique. The flow in regenerator was modeled by means of Brinkman Forchheimer-Extended-Darcy equation . Results showed that when piston moved toward right, velocity vectors near cylinder wall at left piston and right side of regenerator inclined to symmetric axis and velocity vectors near cylinder wall at right piston and left side of regenerator inclined to cylinder wall. And the time averaged Nusselt number was increased by 46.73% when the oscillatory frequency became twice and decreased by 31.46% when the oscillatory frequency became half. The time averaged Nusselt number was increased by 18.09% when thickness of the regenerator became twice and decreased by 7.53% when thickness of the regenerator became half. But mesh size of regenerator hardly affected the Nusselt number. And efficiency of regenerator was larger as the oscillatory frequency was smaller, thickness and mesh size of regenerator was larger.

분자동역학을 이용한 나노구조물의 크기와 결정방향에 따른 응력-변형률 관계 해석 (Analysis of Stress-Strain Relationship of Nano Structures According to the Size and Crystal Orientation by Using the Molecular Dynamics Simulation)

  • 강용수;김현규
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1047-1054
    • /
    • 2008
  • In this paper, the molecular dynamics (MD) simulations are performed with single-crystal copper blocks under simple shear and simple tension to investigate the effect of size and crystal orientation. There are many variances to give influences such as deformation path, temperature, specimen size and crystal orientation. Among them, the crystal orientation has a primary influence on the volume averaged stress. The numerical results show that the volume averaged shear stress decreases as the specimen size increases and as the crystal orientation changes from single to octal. Furthermore, the Schmid factor and yield stress for crystal orientation are evaluated by using the MD simulation on the standard triangle of stereographic projection.

Autoregressive Cholesky Factor Modeling for Marginalized Random Effects Models

  • Lee, Keunbaik;Sung, Sunah
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.169-181
    • /
    • 2014
  • Marginalized random effects models (MREM) are commonly used to analyze longitudinal categorical data when the population-averaged effects is of interest. In these models, random effects are used to explain both subject and time variations. The estimation of the random effects covariance matrix is not simple in MREM because of the high dimension and the positive definiteness. A relatively simple structure for the correlation is assumed such as a homogeneous AR(1) structure; however, it is too strong of an assumption. In consequence, the estimates of the fixed effects can be biased. To avoid this problem, we introduce one approach to explain a heterogenous random effects covariance matrix using a modified Cholesky decomposition. The approach results in parameters that can be easily modeled without concern that the resulting estimator will not be positive definite. The interpretation of the parameters is sensible. We analyze metabolic syndrome data from a Korean Genomic Epidemiology Study using this method.

광 디스크 드라이브 Seek 소음의 음질 평가 (Sound Quality Evaluation of Optical Disc Drive Seek Noise)

  • 이상윤;최명렬;성평용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.401-405
    • /
    • 2003
  • Sound quality is becoming a major concern in optical disc drives (ODD). In order to improve the sound quality of slim type ODDs, we changed lead screw pitch and firmware algorithm in the seek mode. To evaluate the sound quality, the PCM (Paired Comparison Method) was adopted and the result was compared with the time-averaged loudness spectrum. Sound signals were also recorded and modified by increasing or decreasing selected frequency bands to verify their sensitivities to the sound quality. As a result of jury test, preferred frequency bands are associated with the time-averaged loudness spectrum.

  • PDF

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

Characteristics of Barkhausen Noise Properties and Hysteresis Loop on Tensile Stressed Rolled Steels

  • Kikuchi, Hiroaki;Ara, Katsuyuki;Kamada, Yasuhiro;Kobayashi, Satoru
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.427-430
    • /
    • 2011
  • The rolled steels for welded structure applied tensile stress have been examined by means of magnetic Barkhausen noise (MBN) method and of a physical parameter obtained from a hysteresis loop. The behaviors of MBN parameters and coercive force with tensile stress were discussed in relation to microstructure changes. There is no change in MBN parameters and coercive force below yield strength. The coercive force rises rapidly with tensile stress above yield strength. On the other hand, the rms voltage and the peak in averaged rms voltage take a maximum around yield strength and then decreases. The magnetomotive force at peak in the averaged rms voltage shows a minimum around yield strength. These phenomena are attributed to the combined effects of cell texture and dislocation density. In addition, the behaviors of MBN parameters around yield strength may be reflected by the localized changes in strain field due to the formation of dislocation tangles.

홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계 (Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique)

  • 이기돈;김광용
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Large Solvent and Noise Peak Suppression by Combined SVD-Harr Wavelet Transform

  • Kim, Dae-Sung;Kim, Dai-Gyoung;Lee, Yong-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.971-974
    • /
    • 2003
  • By utilizing singular value decomposition (SVD) and shift averaged Harr wavelet transform (WT) with a set of Daubechies wavelet coefficients (1/2, -1/2), a method that can simultaneously eliminate an unwanted large solvent peak and noise peaks from NMR data has been developed. Noise elimination was accomplished by shift-averaging the time domain NMR data after a large solvent peak was suppressed by SVD. The algorithms took advantage of the WT, giving excellent results for the noise elimination in the Gaussian type NMR spectral lines of NMR data pretreated with SVD, providing superb results in the adjustment of phase and magnitude of the spectrum. SVD and shift averaged Haar wavelet methods were quantitatively evaluated in terms of threshold values and signal to noise (S/N) ratio values.

Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.6-9
    • /
    • 2011
  • Spin-motive force has drawn attention because it contains a fundamental physical property. Spin-motive force creates effective electric and magnetic fields in moving magnetization; a vortex is a plausible system for observing the spin-motive force because of the abrupt profile of magnetization. However, the time-averaged value of a spin-motive force becomes zero when a vortex core undergoes gyroscopic motion. By means of micromagnetic simulation, we demonstrates that a non-zero time-averaged electric field induced by spin-motive force under certain conditions. We propose an experimental method of detecting spin-motive force that provides a better understanding of spin transport in ferromagnetic system.