• Title/Summary/Keyword: averaged flat

Search Result 76, Processing Time 0.028 seconds

A visualization study on flow characteristics of sweeping jet impinging on flat plate (Sweeping Jet의 평판 충돌 유동 특성에 관한 가시화 연구)

  • Kim, Sang Hyouk;Kim, Hyun Dong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.16-25
    • /
    • 2018
  • PIV experiments were carried out to visualize the velocity distribution of the sweeping jet impinging onto a flat plate and kinematic behavior of the jet from the fluidic oscillator. Two parameters such as four different Re cases and four different jet-to-wall distances were examined. Time-resolved two dimensional PIV measurements were performed for both streamwise and normal planes respect to the jet axis. Ensemble averaged and phase averaged velocity fields were obtained for the tested range of parameters. The sweeping frequency of the jet increases linearly with increase of Re. The kinetic energy of the sweeping jet decreases as the distance from the jet to the impinging plate increases. In addition, turbulence flow is generated due to the swinging motion of sweeping jet, and various vortices such as primary and secondary vortex are observed near the impinging wall.

GRAVITATIONAL LENSING AND THE GEOMETRY OF THE UNIVERSE

  • Park, Myeong-Gu
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.79-87
    • /
    • 1992
  • New and improved data on the gravitational lens systems discovered so far are compared with the theoretical predictions of Gott, Park, and Lee (1989, GPL). Systems lensed by a single galaxy, compatible with assumptions of GPL, support flat or near-flat geometry for the universe. But the statistical uncertainty is too large to draw any definite conclusion. We need more lens systems. Also, the probability of multiple image lensing and mean separation of the images averaged over the source distribution are calculated for various cosmological models. Multiple-image lens systems and radio ring systems are compared with the predictions. Although the data reject exotic cosmological models, it cannot discriminate among conventional Friedmann models yet.

  • PDF

An experimental study on cooling characteristics of mist impinging jet on a flat plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Sang-Uk;Chung, Won-Seok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information (유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석)

  • Jung Y. R.;Park W. G.;Park O. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

Impact Shock Components and Attenuation in Flat Foot Running (편평족 달리기 시 충격 쇼크의 성분과 흡수)

  • Ryu, Ji-Seon;Lim, Ga-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • Objective : The purpose of this study was to determine the differences in the head and tibial acceleration signal magnitudes, and their powers and shock attenuations between flat-footed and normal-footed running. Methods : Ten flat-footed and ten normal-footed subjects ran barefoot on a treadmill with a force plate at 3.22m/s averaged from their preferred running speed using heel-toe running pattern while the head and tibial acceleration in the vertical axis data was collected. The accelerometers were sampled at 2000 Hz and voltage was set at 100 mv, respectively. The peak magnitudes of the head and tibial acceleration signals in time domain were calculated. The power spectral density(PSD) of each signal in the frequency domain was also calculated. In addition to that, shock attenuation was calculated by a transfer function of the head PSD relative to the tibia PSD. A one-way analysis of variance was used to determine the difference in time and frequency domain acceleration variables between the flat-footed and normal-footed groups running. Results : Peaks of the head and tibial acceleration signals were significantly greater during flat-footed group running than normal-footed group running(p<.05). PSDs of the tibial acceleration signal in the lower and higher frequency range were significantly greater during flat-footed running(p<.05), but PSDs of the head acceleration signal were not statistically different between the two groups. Flat-footed group running resulted in significantly greater shock attenuation for the higher frequency ranges compared with normal-footed group running(p<.05). Conclusion : The difference in impact shock magnitude and frequency content between flat-footed and normal-footed group during running suggested that the body had different ability to control impact shock from acceleration. It might be conjectured that flat-footed running was more vulnerable to potential injury than normal-footed running from an impact shock point of view.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Experimental analysis of vortical structures in a turbulent layer using a dynamic PIV technique (Dynamic PIV를 이용한 난류경계층 내부 와구조 거동의 실험적 분석)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.193-196
    • /
    • 2008
  • The vortical structures in a turbulent boundary layer (TBL) developed over a flat plate have been investigated experimentally. The flow conditions tested in this study were Re$_{\theta}$ = 3700, Re$_{\delta}$ = 11${\times}$105 and the shape factor H = 1.3. Instantaneous velocity fields in the streamwise-wall-normal planes were measured by using a dynamic PIV system. A trip-wire and sandpapers were placed behind the leading edge to promote the turbulent transition. 1000 velocity fields were obtained consecutively with a time interval of 1 millisecond. Streamwise u-velocity components were temporally averaged in the measuring plane. In addition, 2000 velocity fields were obtained randomly and ensemble-averaged to get the fully-developed turbulent characteristics. Profiles of the normalized u-component, turbulent intensities and Reynolds shear stress were evaluated. The structures of spanwise vortices were extracted from the instantaneous velocity fields by determining the swirling strength, ${\lambda}_{ci}$. The wall-normalized locations of vortices were temporally averaged in the measuring plane with respect to their rotational direction. The correlations between the temporally averaged u and the temporally averaged $y^+$ of vortices were evaluated. For the case of positive vortices, the correlation is not significant. However, the negative vortices show a strong negative correlation. The y-location of negative vortices tends to increase, as the averaged u decreases and vice versa. These findings indicate that the number of negative vortices in the outer layer increases during the outward bursting events.

  • PDF

Effect of Periodic Passing Wake on the Flow Field of a Film-Cooled Flat Plate(I) (주기적인 통과후류가 막냉각되는 평판의 유동장에 미치는 영향(1);압력면과 흡입면에 대한 영향(1))

  • Kuk, Keon;Lee, Joon-Sik;Kauh, Sang-Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1931-1940
    • /
    • 1996
  • The effect of periodic passing wake on the film-coolant flow issuing normally from a flat plate was investigated experimentally. The passing wake was generated by rotating thin circular bars. Depending on the rotational direction the test plate could be simulated as a pressure surface or a suction surface of a gas turbine blade. The phase-averaged velocity components were measured using an X-type hot-wire probe. The Reynolds number based on the free-stream velocity and injection hole diameter was 23, 500 and the velocity ratio which is the ratio of film coolant velocity to free-stream velocity was 0.5. The velocity-triangle induced by the wake was similar to that induced by the one generated at the blade trailing edge. The vertical velocity component induced by the passing wake, which approaches to the suction surface and moves away from the pressure surface, played a dominant role in the variation of the flow field. The variation in the phase-averaged velocity on the pressure surface was greater than on the suction surface, but the turbulence kinetic energy variation on the suction surface appeared larger than on the pressure surface.

A STUDY FOR ROUGHNESS FUNCTION OF FLAT PLATE WITH REYNOLDS NUMBER (레이놀즈수에 따른 평판 모델의 거칠기 함수에 관한 연구)

  • Joung, T.H.;Lee, J.H.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.78-84
    • /
    • 2016
  • In this paper, turbulence models for considering roughness in the open source code(OpenFOAM) was investigated. Wall function in the RANS(Reynolds-averaged Navier - Stokes) turbulence model was modified considering roughness on the flat plate by using roughness function. Correlation between the first layer height in the CFD model and roughness height of the plate was observed, and the most proper roughness function, and the first layer height from the plate wall in the CFD analysis was suggested in this paper.