DOI QR코드

DOI QR Code

A visualization study on flow characteristics of sweeping jet impinging on flat plate

Sweeping Jet의 평판 충돌 유동 특성에 관한 가시화 연구

  • Received : 2018.11.07
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

PIV experiments were carried out to visualize the velocity distribution of the sweeping jet impinging onto a flat plate and kinematic behavior of the jet from the fluidic oscillator. Two parameters such as four different Re cases and four different jet-to-wall distances were examined. Time-resolved two dimensional PIV measurements were performed for both streamwise and normal planes respect to the jet axis. Ensemble averaged and phase averaged velocity fields were obtained for the tested range of parameters. The sweeping frequency of the jet increases linearly with increase of Re. The kinetic energy of the sweeping jet decreases as the distance from the jet to the impinging plate increases. In addition, turbulence flow is generated due to the swinging motion of sweeping jet, and various vortices such as primary and secondary vortex are observed near the impinging wall.

Keywords

GSSGB0_2018_v16n3_16_f0001.png 이미지

Fig. 1. Schematic of the fluidic oscillator

GSSGB0_2018_v16n3_16_f0002.png 이미지

Fig. 2. Experimental setup for PIV measurement

GSSGB0_2018_v16n3_16_f0003.png 이미지

Fig. 3. Sweeping jet frequency

GSSGB0_2018_v16n3_16_f0004.png 이미지

Fig. 4. Mean velocity fields of sweeping impinging jet vertical cross section (Re = 8,000, Z/dh = 3, 5, 8, 10)

GSSGB0_2018_v16n3_16_f0005.png 이미지

Fig. 5. Mean velocity profiles of the sweeping jet

GSSGB0_2018_v16n3_16_f0006.png 이미지

Fig. 6. Phase averaged velocity fields of the sweeping jet impinging on the plate (0°, 90°, 180°, 270°)

GSSGB0_2018_v16n3_16_f0007.png 이미지

Fig. 7. Instantaneous velocity fields of the sweeping jet impinging on the flat plate (Re = 16,000, Z/dh = 3)

GSSGB0_2018_v16n3_16_f0008.png 이미지

Fig. 8. Instantaneous vorticity fields of the sweeping jet impinging on the flat plate (Re = 16,000, Z/dh = 3)

GSSGB0_2018_v16n3_16_f0009.png 이미지

Fig. 9. Instantaneous velocity fields of the spreading wall jet at the horizontal cross section of the plate

References

  1. Emmanuel Laroche, Matthieu Fenot, Eva Dorignac, Jean-Jacques Vuillerme, Laurent Emmanuel Brizzi and Juan Carlos Larroya, 2017, "A Combined Experimental and Numerical Investigation of the Flow and Heat Transfer Inside a Turbine Vane Cooled by Jet Impingement", J. Turbomach 140(3), 031002 (9 pages) https://doi.org/10.1115/1.4038411
  2. Pablo A.de Oliveira Jader R. Barbosa Jr., 2017, "Novel two-phase jet impingement heat sink for active cooling of electronic devices", Applied Thermal Engineering Volume 112, pp. 952-964 https://doi.org/10.1016/j.applthermaleng.2016.10.133
  3. Hemu Wang, Wei Yu, Qingwu Cai, 2012, "Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling", Journal of Materials Processing Technology, Volume 212, Issue 9, pp. 1825-1831 https://doi.org/10.1016/j.jmatprotec.2012.04.008
  4. A. Sarkar, N. Nitin, M. V. Karwe, R. P. Singh, 2004, "Fluid Flow and Heat Transfer in Air Jet Impingement in Food Processing", Journal of food science, Volume69, Issue4
  5. D. I. Wilson, P. Atkinson, H. Köhler, M. Mauermann, H. Stoye, K. Suddaby, T. Wang, J. F. Davidson, J.-P.Majschak, 2014, "Cleaning of soft-solid soil layers on vertical and horizontal surfaces by stationary coherent impinging liquid jets", Chemical Engineering Science Volume 109, pp. 183-196 https://doi.org/10.1016/j.ces.2014.01.034
  6. E Thurman, D., Poinsatte, P., Ameri, A., Culley, D., Raghu, S., and Shyam, V., 2016, "Investigation of Spiral and Sweeping Holes"," Journal of Turbomachinery, Vol. 138, No. 9
  7. Cerretelli, C. and Kirtley, K., 2009, "Boundary Layer Separation Control With Fluidic Oscillators," Journal of Turbomachinery, Vol. 131
  8. Mohammad A. Hossain, Lucas Agricola, Ali Ameri, James W. Gregory, Jeffrey P. Bons, 2018, "Sweeping jet film cooling on a turbine vane", Proceedings of ASME Turbo Expo 2018: Turbine Technical Conference and Exposition GT2018
  9. RB Beale, MT Lawler, 1974, "Development of a wall-attachment fluidic oscillator applied to volume flow metering", Instrument Society of America, pp. 989-996.
  10. Koklu, M., 2016, "Effect of a Coanda extension on the performance of a sweeping-jet actuator", AIAA Journal, 54(3): pp. 1-4.
  11. Bobusch, B.C., Woszidlo, R., Bergada, J.M., Nayeri, C.N.N., and Paschereit, C.O., 2013, "Experimental study of the internal flow structures inside a fluidic oscillator," Experiments in Fluids, 54 (6): pp. 1559. https://doi.org/10.1007/s00348-013-1559-6
  12. Camci, C. and Herr, F., 2002, "Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet", Journal of Heat Transfer, Vol. 124, No. 4, pp. 770-782. https://doi.org/10.1115/1.1471521
  13. Zuckerman, N., Lior, N., 2006, "Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling", Advances in Heat Transfer, Vol. 39, pp. 565-631.
  14. Xin Wen, Yingzheng Liu, Hui Tang, 2018, "Unsteady Behavior of a Sweeping Impinging Jet: Time-Resolved Particle Image Velocimetry Measurements", Experimental Thermal and Fluid Science Volume 96, pp. 111-127 https://doi.org/10.1016/j.expthermflusci.2018.02.033
  15. Agricola, L., Hossain, M. A., Prenter, R., Lundgreen, R., Ameri, A., Gregory, J., and Bons, J.P., 207, "Impinging Sweeping Jet Heat Transfer", AIAA paper, 2017-4974.
  16. Tongil Park, Kursat Kara, Daegyoum Kim, 2018, "Flow structure and heat transfer of a sweeping jet impinging on a flat wall", International Journal of Heat and Mass Transfer 124, pp. 920-928 https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.016
  17. Bobusch, B.C., Woszidlo, R., Bergada, J.M., Nayeri, C.N.N., Paschereit, C.O., 2013, "Experimental study of the internal flow structures inside a fluidic oscillator," Experiments in Fluids, 54 (6), pp. 1559. https://doi.org/10.1007/s00348-013-1559-6
  18. Woszidlo, R., Ostermann, F., Nayeri, C. N., Paschereit, C. O., 2015, "The time-resolved natural flow field of a fluidic oscillator", Experiments in fluids, Vol. 56, No. 6, pp. 1-12 https://doi.org/10.1007/s00348-014-1876-4