• Title/Summary/Keyword: average wavelength

Search Result 279, Processing Time 0.029 seconds

Every-other-row-connecting bilayered shufflenet for WDM multihop lighwave networks (WDM 멀티홉 광 통신망을 위한 하나 걸른 행과 연결된 이중층 셔플넷 토폴로지)

  • 지윤규;심현정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.1064-1074
    • /
    • 1997
  • In this paper we propose an every-other-row-connecting bilayered ShuffkeNet for optical WDM(wavelength division multiplexing) multihop networks. We calculate the diameter and the average number of hops of the proposed every-other-row-connecting bilayered ShuffleNet. Using the result, we also calcuate throughputs and delays of the proposed topology, which show higher efficiencies compared to the conventional ShuffleNet, the bilayered ShuffleNet and asymmetric bilayered ShuffleNet.

  • PDF

Chemical Bath Deposition and the Optical Properties of Nanostructured ZnS Thin Films (용액성장법에 의한 ZnS 나노 박막의 제작과 광학적 특성)

  • 이현주;전덕영;이수일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.739-742
    • /
    • 2000
  • Nanostructured ZnS thin films were grown on the slide glass substrate by the chemical bath deposition using an aqueous so1ution Of ZnSO$_4$and CH$_3$CSNH$_2$at 95$^{\circ}C$. The average grain sizes of the ZnS thin film estimating from the Debye-Scherrer formula are 4.8 nm. The optical transmittance edge of the ZnS thin films (4.0 eV) was shifted to the shelter wavelength compared with that of the bulk ZnS (3.67 eV) due to the quantum size effects. The ZnS thin films showed a strong photoluminescence intensity and a sharp emission band from 410 to 480 nm 3t room temperature. The PWHM of photoluminescence peak was about 40 nm. For the viloet(410 nm) and blue(480 nm) emission of the ZnS thin films, the temperature dependence can be described by an Arrhenius equation with an activation energy of 168 and 157 meV, respectively.

  • PDF

Atomic layer deposition of Al-doped ZnO thin films using dimethylaluminum isopropoxide as Al dopant

  • Lee, Hui-Ju;Kim, Geon-Hui;U, Jeong-Jun;Jeon, Du-Jin;Kim, Yun-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.178-178
    • /
    • 2010
  • We have deposited aluminum-doped ZnO thin films on borosilicate glass by atomic layer deposition. Diethylzinc (DEZ) and dimethylaluminum isopropoxide (DMAIP) were used as the metal precursor and the Al-dopant, respectively. Water was used as an oxygen source. DMAIP was successfully used as an aluminum precursor for chemical vapor deposition and ALD. All deposited films showed n-type conduction. The resistivity decreased to a minimum and then increased with increasing the aluminum content. The carrier concentration increased and the carrier mobility decreased with increasing the DMAIP to DEZ pulse ratio. The average optical transmittance was nearly 80 % in the visible part of the spectrum. The absorption edge moved to the shorter wavelength region with increasing the DMAIP to DEZ pulse ratio. Our results indicate that DMAIP is suitable for Al doping of ZnO films.

  • PDF

Microprocessor Based Laser Induced Fluorometry I. Development of System and Application to Liquid Chromatography

  • Kim, Ha-Suck;Park, Chan-Seung;Hwang, Eui-Jin;Chol, Q.-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.6
    • /
    • pp.253-259
    • /
    • 1984
  • An analytical applicability of the fluorescence detection with an optical multichannel analyzer to organic dyes was studied in this work. Continuous acquisition of spectra was possible with the use of a microcomputer. The maximum acquisition rate of a spetrum with 70-point average was about 3 seconds. Floppy discs were used to store data for later use in processing. Laser induced fluorescence detector in High Performance Liquid Chromatography was chosen for an application. Fluorescein below $10^{-15}g$ was detected satisfactorily using this system. With the help of microcomputer, three dimensional chromatograms of time-wavelength-intensity were obtained.

Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy

  • Kim, Ki-Kang;Kim, Soo-Min;Cui, Yan;Jeong, Mun-Seok;Han, Jong-Hun;Choi, Young-Chul;An, Kay-Hyeok;Oh, Kyung-Hui;Lee, Young-Hee
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by $D_m({\lambda})=A_a({\lambda})/A_b({\lambda})^*100$ (%), where ${\lambda}$ is the wavelength and $A_a({\lambda})$ and $A_b({\lambda})$ are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion ($D_m({\lambda})$) between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between ${E_{11}}^S$ and ${E_{22}}^S$ peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.

Optical Line Remote-Monitoring System Using Reflecting Filter (반사필터를 이용한 광선로 원격감시 시스템)

  • Jung, So-Ki;Cha, Kyoung Cheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.357-364
    • /
    • 2014
  • In this paper deals with PON Remote monitoring solution using Reflecting Filter. The current FTTH-PON can not be monitored in real time that Optical cable fault and Quality degradation of Splitter. To solve this problem, Monitoring can make Feeder Network and Splitter that Reflecting filter development using the basic structure of Fiber Bragg grating. Reflecting Filter is Quality Monitoring System shall provide tools for user to view and analyze degradation of cables and splitter in particular predict any gradual component degradation(Optical cable bending, splice, connector, etc) before it becomes service impacting. The Reflecting Filter solution is splitter down and confirm the fault location of optical cable and it will send central control station can be monitored system an alarm to the OLT. In other words, wavelength side branches Mating existing communication affairs (Coupler) using the core of one optical wavelength for live monitoring two wavelengths and sends the subscriber side modem and aggregation switch device remotely using a reflective optical line filter monitoring the study of the system. this study can development of Reflecting filter improve the average processing time of Optical cable fault and efficient Maintenance of the network.

A Study of the Diffusion and Rise of Stack Plumes at Coastal Region by Using LIDAR Observation Data

  • Yoon, Ill-Hee
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.43-58
    • /
    • 1998
  • The Kwinana Shoreline Fumigation Experiment (KSFE) took place at Fremantle, WA, Australia between January 23 and February 8, 1995. The CSIRO DAR LIDAR measured plume sections from near the Kwinana Power Station (KPS) stacks to up to about 5 km downstream. It also measured boundary layer aerosols and the structure of the boundary layer on some occasions. Both stages A and C of KPS were used as tracers at different times. The heart of the LIDAR system is a Neodymium-doped Yttrium-aluminum-garnet (Nd:YAG) laser operating at a fundamental wavelength of 1064 nm, with harmonics of 532 nm and 355 nm. For these experiments the third harmonic was used because the UV wavelength at 355 nm is eye safe beyond about 50 m. The laser fires a pulse of light 6 ns in duration (about 1.8 m long) and with an energy (at the third harmonic) of about 70 mJ. This pulse subsequently scattered and absorbed by both air molecules and particles in the atmosphere. A small fraction of the laser beam is scattered back to the LIDAR, collected by a telescope and detected by a photo-multiplier tube. The intensity of the signal as a function of time is a measure of the particle concentration as a function of distance along the line of the laser shot. The smoke plume was clearly identifiable in the scans both before and after fumigation in the thermal internal boundary layer (TIBL). Both power station plumes were detected. Over the 9 days of operation, 1,568 plumes scans (214 series) were performed. Essentially all of these will provide instantaneous plume heights and widths, and there are many periods of continuous operation over several hours when it should be possible to compile hourly average plume statistics as well. The results of four days LIDAR observations of the dispersion of smoke plume in the TIBL at a coastal site are presented for the case of stages A and C.

  • PDF

Preparation and Properties of Eu3+ Doped Y2O3 Nanoparticles with a Solvothermal Synthesis Using the Ethylene Glycol (에틸렌 글리콜을 이용하여 용매열 합성으로 Eu3+가 도핑된 Y2O3 나노 입자의 제조 및 특성)

  • 신수철;조태환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.709-714
    • /
    • 2003
  • Eu doped $Y_2$ $O_3$ nanoparticles were prepared with the solvothermal synthesis using the ethyleneglycol solvent at 20$0^{\circ}C$ for 3-5 h and then annealed in air at 1000-140$0^{\circ}C$ for 2-4 h. The X-ray diffraction pattern of annealed crystals at 100$0^{\circ}C$ for 2 h could be indexed as pure cubic cell of $Y_2$ $O_3$ phase with lattice parameters a=10.5856 $\AA$ which is very close to the reported data (JCPDS Card File, 41-1105 a=10.6041 $\AA$). Average size of prepared phosphor particles have about 100 nm, which were spherical morphology. The phosphor particle sizes decreased and the emission intensity increased at the annealing temperature. Though PL spectrum analysis, the 3% Eu doped $Y_{2-x}$ $O_3$:E $u_{x}$ $^{3+}$(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum at 611 nm wavelength.

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF

Effects of the Random Fluctuation in Grating Period on the Characteristics of DFB Lasers (회절격자 주기의 랜덤 변이가 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.76-85
    • /
    • 2000
  • Effects of the random fluctuation in grating half-period have been studied by an effective index transfer matrix method in DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled as a Gaussian random variable. The random fluctuation breaks spectral symmetry in both uniform-grating and quarter-wavelength -shifted(QWS) DFB lasers, and decreases the effective coupling coefficient. This leads to increased average mirror loss of ${\pm}$1 modes and reduced stopband width in uniform grating DFB lasers, and degradation in the wavelength accuracy and the single mode stability in QWS-DFB lasers. Threshold gain difference decreases with increasing period fluctuation irrespective of grating coupling coefficient in QWS-DFB lasers, while spatial hole-burning effect is exacerbated or alleviated when the normalized coupling coefficient is lower and higher than 1.5, respectively.

  • PDF