• Title/Summary/Keyword: average size

Search Result 5,802, Processing Time 0.038 seconds

Survey on the Effect of the Herd Size on Reproductive Traits of Korean Native Cows (사육규모에 따른 한우 번식 실태 조사)

  • 백광수;고응규;성환후;이명식;최순호;김영근
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.4
    • /
    • pp.367-373
    • /
    • 1998
  • A survey was carried out to investigate the effect of the herd size on the reproductive traits of Hanwoo(Korean native cows). Data on the reproductive traits of 670 Korean native cows were collected from January, 1996 to December, 1997 and analyzed by the herd size. The results obtained were summarized as follows: 1. The average ages at first breeding were 437.9, 425.5 and 452.9 days in herd size 1 (less than 20 heads), 2 (21∼50 heads) and 3 (more than 51 heads), respectively (the over all average was 443.0 days). However, there was no significant difference between herd sizes (p>0.05). 2. The average ages at first conception were 452.8, 438.4 and 467.1 days in herd size 1, 2 and 3, respectively (the over all average was 460.0 days). However, there was no significant difference between herd sizes (p>0.05). 3. The average ages at first calving were 741.2, 730.2 and 755.9 days in herd size 1, 2 and 3, respectively (the over all average was 746.6 days). However, there was no significant difference between herd sizes (p>0.05). 4. The average days to first estrus after calving was 70.1 days and it was shortest in herd size 3 (64.8 days) and longest in herd size 1(82.1 days). 5. The average numbers of services per conception were 1.54, 1.61 and 1.48 in herd size 1, 2, and 3, respectively (the over all average was 1.53). However, there was no significant difference between herd sizes (p>0.05). 6. The average days to first conception after calving were 115.6, 99.1 and 80.6 days in herd size 1, 2 and 3, respectively (the over all average was 91.2 days). There was a trend that it was shorter as the herd size increased(p<0.05). 7. The average length of calving interval was 375.3 days and it was shortest in herd size 3 (367. 4 days) and longest in herd size 1 (389.5 days).

  • PDF

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

An Adaptive Algorithm for the Quantization Step Size Control of MPEG-2

  • Cho, Nam-Ik
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.138-145
    • /
    • 1997
  • This paper proposes an adaptive algorithm for the quantization step size control of MPEG-2, using the information obtained from the previously encoded picture. Before quantizing the DCT coefficients, the properties of reconstruction error of each macro block (MB) is predicted from the previous frame. For the prediction of the error of current MB, a block with the size of MB in the previous frame are chosen by use of the motion vector. Since the original and reconstructed images of the previous frame are available in the encoder, we can calculate the reconstruction error of this block. This error is considered as the expected error of the current MB if it is quantized with the same step size and bit rate. Comparing the error of the MB with the average of overall MBs, if it is larger than the average, small step size is given for this MB, and vice versa. As a result, the error distribution of the MB is more concentrated to the average, giving low variance and improved image quality. Especially for the low bit application, the proposed algorithm gives much smaller error variance and higher PSNR compared to TM5 (test model 5).

  • PDF

Optical-Electronic Method for Statistical Evaluation of Human Corneal Endothelial Patterns (Human Corneal Endothelial 패턴의 통계적 분석을 위한 광전자적 방법)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.58-62
    • /
    • 1992
  • Hybrid optical-electronic procedures are introduced for the automated estimation of cell parameters (e.g., size, size variation, and shape). Two different optical Fourier analysis procedures are applied to high contrast cell boundary patterns obtained from specular micrographs of the endothelial layer. In one case, a large number of cell patterns are illuminated to extract average cell size information. Once the average cell size information has been obtained, individual cells are illuminated to extract shape information.

  • PDF

Prediction of the Level of Influence of Average particle Size and Color n Evaluation of Building Material (재료의 색채와 입도가 건축 재료 평가에 미치는 영향도 예측)

  • 이진숙;진은미;오도석
    • Korean Institute of Interior Design Journal
    • /
    • no.26
    • /
    • pp.57-63
    • /
    • 2001
  • The aim of this study is to measure sensitivity reaction of human being with a physical properties of color and average size of particle for building materials and predict the influence of color and average size of particle in evaluation of building materials. As a results, 1) In results of qualitative evaluation construction, all 16 adjectives were extracted by higher evaluation items and ,total 14 adjectives were extracted as evaluation adjectives except adjectives of a contrary concept in each other. 2) According to the result of factor analysis, all 4 group of $\ulcirner$potency$\lrcirner$, $\ulcirner$activity$\lrcirner$, $\ulcirner$evaluation$\lrcirner$, $\ulcirner$warmness$\lrcirner$ were extracted. In this time, $\ulcirner$potency$\lrcirner$ as the first factor indicates the most hign original value. Consequently, $\ulcirner$potency$\lrcirner$ factor have an hign influence in evaluation of building materials. 3) As a influence analysis of evaluation variable by evaluation item $\ulcirner$potency$\lrcirner$ factor have an high influence by influence of average size of a particle, $\ulcirner$activity$\lrcirner$ factor have influence hignly by influence of brightness, $\ulcirner$evaluation$\lrcirner$ factor have an hign influence by influence of average site of a particle and the hue, $\ulcirner$warmness$\lrcirner$ factor have an hign influence mainly by influence of the hue

  • PDF

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Application of Spray Pyrolysis Process for the Preparation of Nano Sized Cobalt Oxide Powder

  • Kim, Dong Hee;Seo, Dong Jun;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In this study, nano-sized cobalt oxide powder with an average particle size below 50 nm was prepared from a cobalt chloride solution by the spray pyrolysis process. The influences of reaction temperature on the properties of the generated powder were examined. The average particle size of the particles formed based on the spray pyrolysis process at a reaction temperature of $700^{\circ}C$ is roughly 20 nm. Moreover, most of these particles cannot appear with an independent type, thereby coexisting in a droplet type. When the reaction temperature increases to $800^{\circ}C$, the average particle size not only increases to roughly 40 nm but also shows a more dense structure while the ratio of particles which shows a polygonal form significantly increases. As the reaction temperature increases to $900^{\circ}C$, the distribution of the particles is from roughly 70 nm to 100 nm, while most of the particle surface is more intricately close and forms a polygonal shape. When the reaction temperature increases to $1000^{\circ}C$, the particle size distribution of the powder shows an existing form from 80 nm to at least 150 nm in an uneven form. As the reaction temperature increases, the XRD peak intensity gradually increases, yet the specific surface area gradually decreases.

Effect of Nozzle Tip Size on the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 코발트 산화물 나노 분체 제조에 미치는 노즐 팁 크기의 영향)

  • Kim, Dong Hee;Yu, Jae Keun
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.41-49
    • /
    • 2016
  • The present study was intended to prepare cobalt oxide ($Co_3O_4$) powder of average particle size 50 nm or less by spray pyrolysis reaction using the raw cobalt chloride ($CoCl_2$) solution, in order to identify the change in the nature of the particles according to the change in the nozzle tip size. When the nozzle tip was 1 mm, it turned out that most of the droplets were spherical and the surface showed very tight structure. The average particle size of the finally formed particles was 20-30 nm. When the nozzle tip size was 2 mm, some of the droplets formed were spherical, but a considerable part of them showed severely disrupted form. particles formed showed an average particle size of 30 - 40 nm. For the nozzle tip size of 5 mm, spherical droplets were almost non-existent and most were in badly fragmented state. The tightness of surface structure of the droplets has greatly been reduced compared with other nozzle tip sizes. Average size of the formed particles was about 25 nm. As the nozzle tip size increased from 1 mm to 2 mm and 3 mm, the intensities of the XRD peaks have changed little, but significantly been reduced when the nozzle tip size increased to 5mm. As the nozzle tip size increased from 1 mm to 2 mm, the specific surface area of the particles decreased, but the nozzle tip size increased to 5mm, the specific surface area remarkably increased.

Change of Particle Size of Magnesium Silicate According to Reaction Conditions and Evaluation of Its Polyol Purification Ability (반응 조건에 따른 규산마그네슘의 입도 변화 및 폴리올 정제 능력평가)

  • Yoo, Jhongryul;Jeong, Hongin;Kang, Donggyun;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The efficiency of the synthetic magnesium silicate used in basic polyols and edible oil purification is evaluated by its purification ability and filtration rate and is affected by the particle size and surface area of magnesium silicate. In this study, it was investigated the change on the particle size of magnesium silicate was influenced by the reaction temperature, injection rate, injection order (Si, Mg) and Mg/Si reaction mole ratio. The synthesized magnesium silicate was compared and analyzed for the synthesis, grinding, and refining processes. In the synthesis process, the reaction temperature and feed rate did not affect the average particle size change of magnesium silicate, while the reaction molar ratio of Mg / Si and the order of injection acted as main factors for the change of average particle size. The average particle size of magnesium silicate increased by 8.7 ㎛ from 54.4 ㎛ to 63.1 ㎛ at Mg injection when Mg molar ratio increased from 0.125 to 0.500, and increased by about 4.8 ㎛ from 47.3 ㎛ to 52.1 ㎛ at Si injection. The average particle size according to the order of injection was 59.1 ㎛ for Mg injection and 48.4 ㎛ for Si injection and the difference was shown 10.7 ㎛, therefore the filtration rate was about 2 times faster under the condition of Mg injection. That is, as the particle size increases, the filtration time is shortened and washing filtration rate can be increased to improve the productivity of magnesium silicate. The cake form of separated magnesium silicate after filtration becomes a solid through drying process and is used as powdery adsorbent through the grinding process. As the physical strength of the dried magnesium silicate increased, the average particle size of the powder increased and it was confirmed that this strength was affected by the reaction molar ratio. As the reaction molar ratio of Mg / Si increased, the physical strength of magnesium silicate decreased and the average particle size after grinding decreased by about 40% compared to the average particle size after synthesis. This reduction of strength resulted in an improvement of the refining ability due to the decrease of the average particle size and the increase of the amount of fine particle after the pulverization, but it resulted in the decrease of the purification filtration rate. While the molar ratio of Mg/Si was increased from 0.125 to 0.5 at Mg injection, the refining ability increased about 1.3 times, but the purification filtration rate decreased about 1.5 times. Therefore, in order to improve the productivity of magnesium silicate, the reaction molar ratio of Mg / Si should be increased, but in order to increase the purification filtration rate of the polyol, the reaction molar ratio should be decreased. In the synthesis parameters of magnesium silicate, the order of injection and the reaction molar ratio of Mg / Si are important factors affecting the changes in average particle size after synthesis and the changes of particle size after grinding due to the changes of compressive strength, therefore the synthetic parameter is an important thing that determines productivity and refining capacity.