Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.1.25

Application of Spray Pyrolysis Process for the Preparation of Nano Sized Cobalt Oxide Powder  

Kim, Dong Hee (Department of Anesthesiology, Dankook University)
Seo, Dong Jun (Department of Advanced Materials Engineering, Hoseo University)
Yu, Jae Keun (Department of Advanced Materials Engineering, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.24, no.1, 2014 , pp. 25-32 More about this Journal
Abstract
In this study, nano-sized cobalt oxide powder with an average particle size below 50 nm was prepared from a cobalt chloride solution by the spray pyrolysis process. The influences of reaction temperature on the properties of the generated powder were examined. The average particle size of the particles formed based on the spray pyrolysis process at a reaction temperature of $700^{\circ}C$ is roughly 20 nm. Moreover, most of these particles cannot appear with an independent type, thereby coexisting in a droplet type. When the reaction temperature increases to $800^{\circ}C$, the average particle size not only increases to roughly 40 nm but also shows a more dense structure while the ratio of particles which shows a polygonal form significantly increases. As the reaction temperature increases to $900^{\circ}C$, the distribution of the particles is from roughly 70 nm to 100 nm, while most of the particle surface is more intricately close and forms a polygonal shape. When the reaction temperature increases to $1000^{\circ}C$, the particle size distribution of the powder shows an existing form from 80 nm to at least 150 nm in an uneven form. As the reaction temperature increases, the XRD peak intensity gradually increases, yet the specific surface area gradually decreases.
Keywords
nano-sized cobalt oxide powder; cobalt chloride solution; spray pyrolysis process; average particle size; reaction temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Nakamura and Y. Okano, Proceeding of the ICF 7, C1-101 (1996).
2 C. P. Udawatte and K. Yanagisawa, J. Am. Ceram. Soc., 84(1), 251 (2001).   DOI   ScienceOn
3 J. K. Yu and D. H. Kim, Kor. J. Mater. Res., 23(2), 81 (2013)   DOI   ScienceOn
4 J. K. Yu and D. H. Kim, Powder Tech., 235(2), 1030 (2013)   DOI   ScienceOn
5 J. K. Yu and D. H. Kim, J. of Nanosci. Nanotechnol., 12(2), 1545 (2012)   DOI   ScienceOn
6 J. K. Yu and D. H. Kim, J. Ceram. Soc. Jpn., 117(10), 1078 (2009).   DOI
7 J. K. Yu, S. G. Kang, J. B. Kim, J. Y. Kim, J. S. Han, J. W. Yoo, S. W. Lee and Z. S. Ahn, Mater. Trans., 47(7), 1838 (2006).   DOI   ScienceOn
8 J. K. Yu, K. W. Kim, T. S. Kim and J. Y. Kim, Mater. Trans., 46(7),1695 (2005).   DOI   ScienceOn
9 D. Majumdar, T. A. Shefelbine and T. T. Kodas, J. Mater. Res., 11(11), 2861 (1996).   DOI   ScienceOn
10 T. C. Pluym and T. T. Kodas, J. Mater. Res., 10(7), 1661 (1995).   DOI   ScienceOn
11 G. L. Messing, S. C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc,. 76(11), 2707 (1993).   DOI   ScienceOn
12 I. Barin: Thermochemical Data of Pure Substances, VCH, Germany, 1392-1404 (1989).
13 J. K. Yu, S. G. Kang, K. C. Chung. J. S. Han and D. H. Kim, Mater. Trans., 48(2), 249 (2007).   DOI   ScienceOn