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Abstract

Hybrid optical-electronic procedures are introduced
for the automated estimation of cell parameters (e-g-,
size, size variation, and shape). Two different optical
Fourier analysis procedures are applied to high con-
trast cell boundary patterns obtained from specular
micrographs of the endothelial layer. In one case, a
large number of cell patterns are illuminated to ex-
tract average cell size information. Once the average
cell size information has been obtained, individual
cells are illuminated to extract skape infomation.

1. Introdution
The endothelial cell layer consists of some 350,000 to
500,000 polygonal cells. Cells have center—to—center
spacings of approximately 20 um. Their thickness in
the longitudinal direction (orthogonal to the plane of
observation) is approximately 5 um. The cells are
predominately hexagonal in shape (61~75 %). Cell
density decreases with age and disease, as does the
degree of hexagonality[1,2]. Under currently-used
computer morphometric methods, the polygonal cell
boundaries appearing in specular micrographs are
traced out by hand or by a computer with strong hu-
man intervention. The boundary patterns are then
digitized and analyzed by computer. The statisti-
cal estimation of morphological parameters is often
based on the spatial analysis of only 50 ~ 100 en-
dothelial cells, since the techniques are so slow. This
number is often considered too small for clinical eval-
uation of the corneal tissue, particularly since there
might be wide variation in cell size and shape from
one region of the cornea to another.

In this paper, an optical-electronic method for
the automated evaluation of the endothelial pattern.
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The method is based on the two dimensional Fourier
transform of the cell-boundary pattern[3]. Prelim-
inary results obtained by an optical-digital experi-
ment[4] indicated that the optical Fourier transform
obtained from cell boundary patterns could be used
to estimate with a good accuracy the average cell
density over a wide range (1000 to 3000 cells/mm?);
further experiments indicated that shape character-
istics could be extracted. One important conclusion
of the preliminary experiments was that the optical
method could be implemented in such a way that
large numbers of cells (> 1000) can be easily be an-
alyzed.

2. Diffraction Pattern Analysis

An input cell boundary pattern is analyzed by a diffrac-
tion pattern sampling using a wedge-ring detector
(WRD) with 32 wedge detecting elements and 32
semi-annular elements|5-10]. Equations 1 and 2 show
a mathematical representation of the data reduction

operation in the Fourier transform (FT) plane.
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where I(p, ) is the Fourier intensity distribution in
polar coordinates, and S,, and Q, are the areas cor-
responding to the mth ring and nth wedge segments,
respectively. The radial projection R,, provides infor-
mation about the size of the object and is invariant to
the orientation of the input object. The angular pro-
jection A, contains shape information on the object
and is insensitive to the size of the object. Both R,
and A, are invariant to horizontal or vertical transla-
tion of the object through the invariance of I{p, ) to
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Figure 1. A coherent optical system ihcorporating a
wedge-ring detector (WRD) in the Fourier transform

(FT) plane.

such translation. Figure 1 shows a single lens Fourier
transforming system with a WRD positioned in the
FT plane. With an object ¢(z,y) illuminated by a
converging beam, the output intensity I(z,y) in the

FT plane[11] is given by
z Y
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where A is a proportionality factor, A is the wave-
length of the incident quasi-monochromatic light, d, 7
is the distance from the object to the FT plane, and
T(u,v) is the FT of t(z,y). In Eq. 3, we assume that
the object t(z,y) is fully illuminated (i.e., that the
pupil function of the lens can be ignored)[11]. In-
stead of using a WRD, a CCD camera was used as a
detecting device. A WRD with 64 annular rings and
64 wedge sections was simulated on a computer.
Figures 2 and 3 illustrate how the optical diffrac-
tion pattern can be used for the statistical estima-~
tion of morphological parameters of polygonal cells.
Figures 2(a) and (b) show a single hexagon and its
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optical Fourier intensity pattern. The distance from
the origin to the first bright region in the Fourier
intensity pattern is inversely proportional to the di-
ameter of the hexagon. Each spoke in the Fourier
intensity pattern results from the corresponding par-
allel sides of the hexagon. The angles (i.e., 60° for a
regular hexagon) between two spokes can be used to
infer shape characteristics. Figure 2(c) shows the an-
gular projection A, obtained from the intensity pat-
tern in (b). The locations of the peaks represent the
distances in angle of each spoke from a reference an-
gle (e.g., 0°). Figure 3(a) shows an array of regular
hexagons and Fig. 3(b) its Fourier intensity pattern.
The radial distance from the origin to the first bright
region of the FT pattern remains the same as the
number of regular hexagons increases. Spoke pat-
terns acquire a spot-like pattern because of sampling
effects. The radial projection R,, of the intensity pat-
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tern in Fig. 3(b) is shown in Fig. 3(c), the location
of the first peak giving information on the size of the
hexagon. )

As the regularity of the size and orientation in the
input pattern is reduced, for example as the regular
hexagonal array changes to the corneal pattern array,
a speckle-like pattern arises. However, a bright re-
gion still forms in the Fourier intensity pattern. Fig-
ures 4(a) and (b) show such a cell boundary pattern
with random orientation of the cells and variations
in size and shape, along with its Fourier intensity
pattern. Note in Fig. 4(b) the presence of a central
dark ring surrounded by a bright ring. The radial
projection of the Fourier intensity pattern is shown
in Fig. 4(c). The radius of the first bright ring is es-
timated by measuring the location of the first peak in
the plot of the radial projection. Figure 5 shows the
results of locating the peaks for 5 cell patterns with
the same cell density ranging from 1000 cells/cm?,
but with three sets of different coefficients of aver-
age size (CV) variations. It is clear from the high
degree of linearity that cell size (or density) can be
accurately inferred from measurements of the Fourier
intensity patterns. The measurements in Fig. 5 were
made by illuminating 100 to 400 cells at a time. By
scanning illuminating beam, it is possible to estimate
cell density over an entire endothelial pattern, incor-
porating perhaps several thousand cells in a matter
of seconds. That in itself illustrates the power of the
hybrid optical method. In addition, a possible mea-~
sure of the size variation can be made by calculating
the contrast or normalized mean—square difference
(NMSD) between the first dark and bright regions
of the Fourier intensity pattern. Figure 6 shows the
NMSD values calculated for 15 patterns, yielding a
reasonable good clustering.

It was relatively straightforward to obtain mea-~
sures of the size and size variation by scanning a
number of cells. However, cell shape cannot be de-
termined directly by scanning a large group of cells
at a time, since coherent averaging eliminates shape
information on individual cells. This coherent aver-
aging effect can easily be seen in Fig. 4 where ap-
proximately 200 cells were illuminated. Initial stud-
ies[4] indicated that to obtain useful shape informa~
tion from the FT patterns of cells it is desirable to
limit the illuminated area of an input pattern to a
small region, i.e., approximately one cell size.

In order to remove the orientational dependence
of cells, the angular correlation function, C(n) is cal-
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Figure 2. A single hexagonal boundary pattern and
its Fourier intensity pattern: (2) boundary pattern;
(b) Fourier intensity pattern of (a); (c) angular pro-
Jection A, obtained from (b). A
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Figure 3. An array of hexagonal boundary patterns:
(a) boundary pattern; (b) Fourier intensity pattern
of (a); (c) radial projection R,, obtained from (b).

culated from A4,,

My Mw
C(n) = (E AAria)/(A}) 0<n<es (g

k=1
where A} = the kth component of the angular projec-
tion and My, (= 64) is the number of wedge segments.
Figure 7 shows C(n) for the single hexagon of Fig. 2;
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two well-defined peaks appear at 60° and 120°. The
angular correlation function for a regular hexagonal
array pattern has similar appearance, though with
sampled version.

For an optical experiment for the shape measure,
the 24 cells shown in Fig. 8(a) were manually scanned,
one cell at a time, with a beam size slightly larger
than the fifth cell. Figure 8(b) and (c) show the
FT patterns of two cells (Nos. 14 and 15) and their
angular correlation functions [= C{n)]. The mean
Com(n) of angular correlation functions obtained from
24 numbered cells is shown in Fig. 8(d). Cm(n) in (d)
still has well-defined peaks and dips as well as angu-
lar lobes, but the peaks are broader with much higher
amplitude ratio of dip to peak than those of the
hexagonal pattern in Fig. 7. The peaks are located
at approximately 60° and 120°. The shape-related
characteristics found with individual cell transforms
are lost in the Fourier intensity pattern of a large
group of cells, as shown in Fig. 4, but preserved,
in an average sense, in the mean of the correlation
functions associated with these individual cells. It
has been observed that the location and width of
the peaks in Cy(n) may represent the average shape
and the average variation of sides of 24 scanned cells.
It is hypothesized that the locations and the widths
of the peaks have clinical diagnostic significance in
much the same way that percent—of-hexagons and
coefficient of average size (CV) do now. For exam-
ple, pronounced peaks at 60° and 120° on the § axis
suggests a preponderance of hexagonal cells.

3. Concluding Remarks

The experimental results indicate that the Fourier
transforms can be analyzed to yield average cell size
or density as well as the distribution of sizes. These
quantities have major significance in the diagnostic
evaluation of the cornea. The diagnostic evaluation
of the clinical course of Fuchs’ dystrophy can be mon-
itored by an analysis of endothelial morphology. The
optical method can also be applied to the morpho-
logic analysis and pattern recognition of retinal pho-
tomicrographs. The entire collection of cell patterns,
which may number several thousand, can be incorpo-
rated in the transform in a fully parallel operation,
and thus statistical averaging is done automatically.
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Figure4. Cell boundary pattern and its Fourier trans-
form: (a) input; (b) Fourier intensity pattern of (a);
(c) normalized radial projection of (b).
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Figure 5. Plot of B, versus +/CD for 15 cell patterns
where CD and CD represent the cell density and co-
efficient of size, respectively. The solid line represents
the linear regression of the 15 data points.
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Figure 6. Plot of normalized mean-square difference
(NMSD) for 15 cell patterns.
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Figure 7. Angular correlation C(n) obtained for the
single hexagonal boundary pattern in Fig. 2.

Figure 8. Experimental results using local scans for
shape measurement. (a) Upper-left: 24 numbered
cells. (b) Upper-right: optical Fourier intensity pat-
terns of cells 14 and 15. (c) Middle: angular corre-
lation functions [= C(n)| for cells 14 (left) and 15
(right). (d) Bottom: mean of 26 C(n)’s obtained
from 24 numbered cells in (a).
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