• Title/Summary/Keyword: average error

Search Result 2,657, Processing Time 0.026 seconds

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.

An Experimental Study to Establish a System for Vertifying the Insulation Performance of Buildings (건축물의 단열성능 검증 시스템 구축을 위한 실험적 연구)

  • Kim, Hyun-Jin;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.203-211
    • /
    • 2021
  • Recently, the insulaton design standards for reducing the energy use of buildings have been strengthened. Althoug insulation work is the most cost-effective method for reducing the primary energy consumption per unit area of a building, there are no evaluation criteria for insulation performance at the time of construction and completion inspection. The purpose of this study is to provide objective data by establishing a standard for an analysis method and a method for easily experimenting with the exterior wall thermal transmittance of an apartment house using a thermal transmittance measuring device(TESTO 435). For the exterior wall of the test subject, the specific heat per unit area exceeded 20kJ/(m2·K), and the data at the end point suitable for ISO 9869-1 were analyzed by the average method. The measured values of the thermal transmittance for 3 consecutive days converged within +5% of the desing value, and the standard deviation of the thermal transmittance by day decreased in the order of 1-Day > 3-Day > 2-Day. The standard deviation of the thermal transmittance by time period decreased in the order of 00:00~24:00 < 19:00~07:00 < 00:00~07:00. The measured value of the thermal transmittance for the time perion of 00:00 to 07:00 per day almost coincided with an error of -3% to + 2% compare to the desing value.

Feasibility Analysis of the Bridge Analytical Model Calibration with the Response Correction Factor Obtained from the Pseudo-Static Load Test (의사정적재하시험 응답보정계수에 의한 교량 해석모델 보정의 타당성 분석)

  • Han, Man-Seok;Shin, Soo-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.50-59
    • /
    • 2021
  • Currently, the response correction factor is calculated by comparing the response measured by the load test on a bridge with the response analyzed in the initial analytical model. Then the load rating and the load carrying capacity are evaluated. However, the response correction factor gives a value that fluctuates depending on the measurement location and load condition. In particular, when the initial analytical model is not suitable for representing the behavior of a bridge, the range of variation is large and the analysis response by the calibrated model may give a result that is different from the measured response. In this study, a pseudo-static load test was applied to obtain static response with dynamic components removed under various load conditions of a vehicle moving at a low speed. Static response was measured on two similar PSC-I girder bridges, and the response correction factors for displacement and strain were calculated for each of the two bridges. When the initial analysis model was not properly set up, it is verified that the response of the analytical model corrected by the average response correction factor does not fall within the margin of error with the measured response.

Alcohol content analysis for Takju, a representative traditional liquor in Korea (대한민국 대표 전통주 탁주의 알코올 도수 분석)

  • Oh, Chang-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.631-636
    • /
    • 2022
  • Alcohol content, which is an important standard for Takju, a traditional multiple parallel fermentation liquor called makgeolli, is a factor that can affect the flavor. For alcohol content analysis, the distillation/hydrometry technique is mainly used. In this study, we analyzed the alcohol content of 14 commercially available Takju by the distillation/hydrometry technique and the improved GC method, respectively, after verifying the reliability of improved GC method. The precision and accuracy of the GC method were satisfactory, and LOQ and LOD were evaluated as 0.5% and 0.1% of ethanol contents, respectively. Among the three Takju exceeding the labelled alcohol content ±1, one Takju was quantitated as alcohol content 9.9% (by GC method) and 10.1% (distillation/hydrometry technique) exceeding labelled 6.0%. It was within the analytical error range of alcohol content for other two Takju, where the alcohol contents were exceeded -1.1%. The average precision (%RSD) of 14 Takju analyzed by the distillation/hydrometry technique (36.2%) and the GC method (12.8%), confirming that the GC method was better than the other. The improved GC method was evaluated to be effective in managing and improving the alcohol content standard of Takju with the wide range of alcohol content.

Comparison of total energy intakes estimated by 24-hour diet recall with total energy expenditure measured by the doubly labeled water method in adults

  • Kim, Eun-Kyung;Fenyi, Justice Otoo;Kim, Jae-Hee;Kim, Myung-Hee;Yean, Seo-Eun;Park, Kye-Wol;Oh, Kyungwon;Yoon, Sungha;Ishikawa-Takata, Kazuko;Park, Jonghoon;Kim, Jung-Hyun;Yoon, Jin-Sook
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.646-657
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: The doubly labeled water (DLW) method is the gold standard for estimating total energy expenditure (TEE) and is also useful for verifying the validities of dietary evaluation tools. In this study, we compared the accuracy of total energy intakes (TEI) estimated by the 24-h diet recall method with TEE obtained using the doubly labeled water method. SUBJECTS/METHODS: This study involved 71 subjects aged 20-49 yrs. Over a 14-day period, three 24-h diet recalls per subject (2 weekdays and 1 weekend day) were used to estimate energy intakes, while TEE was measured using the DLW method. The paired t-test was used to determine the significance of differences between TEI and TEE results, and the accuracy of the 24-h recall method was determined by accuracy predictions percentage, root mean square error, and bias. RESULTS: Average study subject age was 33.4 ± 8.6 yrs. The association between TEI and TEE was positive and significant (r = 0.463, P < 0.001), and the difference between TEI (2,084.3 ± 684.2 kcal/day) and TEE (2,401.7 ± 480.3 kcal/day) was also significant (P < 0.001). In all study subjects, mean TEI was 12.0% (307.5 ± 629.3 kcal/day) less than mean TEE, and 12.2% (349.4 ± 632.5 kcal/day) less in men and 11.8% (266.7 ± 632.5 kcal/day) less in women. Rates of TEI underprediction for all study subjects, men, and women, were 60.5%, 51.4%, and 66.7%, respectively. CONCLUSIONS: This study shows that 24-h diet recall underreports energy intakes. More research is needed to corroborate our findings and evaluate the accuracy of 24-h recall with respect to additional demographics.

A Study on A Deep Learning Algorithm to Predict Printed Spot Colors (딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구)

  • Jun, Su Hyeon;Park, Jae Sang;Tae, Hyun Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

A Study on Machine Learning of the Drivetrain Simulation Model for Development of Wind Turbine Digital Twin (풍력발전기 디지털트윈 개발을 위한 드라이브트레인 시뮬레이션 모델의 기계학습 연구)

  • Yonadan Choi;Tag Gon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2023
  • As carbon-free has been getting interest, renewable energy sources have been increasing. However, renewable energy is intermittent and variable so it is difficult to predict the produced electrical energy from a renewable energy source. In this study, digital-twin concept is applied to solve difficulties in predicting electrical energy from a renewable energy source. Considering that rotation of wind turbine has high correlation with produced electrical energy, a model which simulates rotation in the drivetrain of a wind turbine is developed. The base of a drivetrain simulation model is set with well-known state equation in mechanical engineering, which simulates the rotating system. Simulation based machine learning is conducted to get unknown parameters which are not provided by manufacturer. The simulation is repeated and parameters in simulation model are corrected after each simulation by optimization algorithm. The trained simulation model is validated with 27 real wind turbine operation data set. The simulation model shows 4.41% error in average compared to real wind turbine operation data set. Finally, it is assessed that the drivetrain simulation model represents the real wind turbine drivetrain system well. It is expected that wind-energy-prediction accuracy would be improved as wind turbine digital twin including the developed drivetrain simulation model is applied.

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM (CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화)

  • Seheum Hong;Jiachen Hou;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2023
  • In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.