• Title/Summary/Keyword: avalanche multiplication

Search Result 16, Processing Time 0.019 seconds

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode

  • Sim, Jae-Sik;Kim, Kisoo;Song, Minje;Kim, Sungil;Song, Minhyup
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.916-922
    • /
    • 2021
  • We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.

Fabrication and characterization of InGaAs Separate Absorption Grading Multiplication Avalache Photodiodes for 2.5 Gbps Optical Fiber Communication System (2.5Gbps 광통신용 InGaAs separate absorption grading multiplication (SAGM) advanche photodiode의 제작 및 특성분석)

  • 유지범;박찬용;박경현;강승구;송민규;오대곤;박종대;김흥만;황인덕
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.340-346
    • /
    • 1994
  • 2.5Gbps 광통신시스템용 수광소자로서 charge plate층을 갖는 링구조의 separate absorption grading multiplication avalanche photodiode를 제작하고 그 특성을 조사 분석하였다. Avalanche Photodiode의 제작은 Metal-Organic Chemical Vapor Deposition 과 Liquid Phase Epitaxy법을 이용한 에피성장과 Br:Methanol을 이용한 채널식각 방법을 사용하였고, passivation과 평탄화는 photosensitive polyimide를 이용하였다. 제작된 ADP는 10nA 이하의 작은 누설전류를 나타내었고, -38~39 V의 항복전압을 나타내었다. 제작된 ADP를 GaAs FET hybrid 전치증폭기와 결합하여 2.5Gbps 속도에서 $2^{23}-1$의 길이를 갖는 입력 광신호에 대해 $ 10^{-10}$ Bit Error Rate에서 -31.0dBm의 수신감도를 얻었다.

  • PDF

Analysis of local model and non-local model for a multiplication layer design (증폭증 설계를 위한 local 모델과 non-local 모델의 비교 및 분석)

  • Hwang, Seong-Min;Sim, Jong-In;Eo, Yeong-Seon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.278-279
    • /
    • 2004
  • The multiplication region of an APD(Avalanche photodiode) plays a critical role in determining the gain, the multiplication noise, and the gain-bandwidth product. we compared and analyzed the local model and the non-local model for a 10Gb/s APD designing.

  • PDF

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

Frquency Characteristics of Electronic Mixing Optical Detection using APD for Radio over Fiber Network (무선 광파이버 네트웍(RoF)을 위한 APD 광전 믹싱검파의 주파수 특성)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1386-1392
    • /
    • 2009
  • An analysis is presented for super-high-speed optical demodulation by an avalanche photodiode(APD) with electric mixing. A normalized gain is defined to evaluate the performance of the optical mixing detection. Unlike previous work, we include the effect of the nonlinear variation of the APD capacitance with bias voltage as well as the effect of parasitic and amplifier input capacitance. As a results, the normalized gain is dependent on the signal frequency and the frequency difference between the signal and the local oscillator frequency. However, the current through the equivalent resistance of the APD is almost independent of signal frequency. The mixing output is mainly attributed to the nonlinearity of the multiplication factor. We show also that there is an optimal local oscillator voltage at which the normalized gain is maximized for a given avalanche photodiode.

Analysis of the Electrical Characteristics with Channel Length in n-ch and p-ch poly-Si TFT's (채널 길이에 따른 n-채널과 p-채널 Poly-Si TFT's의 전기적 특성 분석)

  • Back, Hee-Won;Lee, Jea-Huck;Lim, Dong-Gyu;Kim, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.971-973
    • /
    • 1999
  • 채널길이에 따른 n-채널과 p-채널 poly-Si TFT's를 제작하고 그 전기적 특성을 분석하였다. n-채널과 p-채널소자는 공통적으로 기생바이폴라트 랜지스터현상(parasitic bipolar transistor action)에 의한 kink 효과, 전하공유(charge sharing)에 의한 문턱전압의 감소, 소오스와 드레인 근처의 결함에 의한 RSCE(reverse short channel effect) 효과, 수직전계에 의한 이동도의 감소, 그리고 avalanche 증식에 의한 S-swing의 감소가 나타났다. n-채널은 p-채널 보다 더 큰 kink, 이동도, S-swing의 변화가 나타났으며, 높은 드레인 전압에서의 문턱전압의 이동은 avalanche 증식(multiplication)에 의한 것이 더 우세한 것으로 나타났다. 누설전류의 경우, 채널 길이가 짧아짐에 따라 n-채널은 큰 증가를 나타냈으나 p-채널의 경우는 변화가 나타나지 않았다.

  • PDF

Calculation of Primary Electron Collection Efficiency in Gas Electron Multipliers Based on 3D Finite Element Analysis (3차원 유한요소해석을 이용한 기체전자증폭기의 1차 전자수집효율의 계산)

  • Kim, Ho-Kyung;Cho, Min-Kook;Cheong, Min-Ho;Shon, Cheol-Soon;Hwang, Sung-Jin;Ko, Jong-Soo;Cho, Hyo-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • Gas avalanche microdetectors, such as micro-strip gas chamber (MSGC), micro-gap chamber (MGC), micro-dot chamber (MDOT), etc., are operated under high voltage to induce large electron avalanche signal around micro-size anodes. Therefore, the anodes are highly exposed to electrical damage, for example, sparking because of the interaction between high electric field strength and charge multiplication around the anodes. Gas electron multiplier (GEM) is a charge preamplifying device in which charge multiplication can be confined, so that it makes that the charge multiplication region can be separate from the readout micro-anodes in 9as avalanche microdetectors possible. Primary electron collection efficiency is an important measure for the GEM performance. We have defined that the primary electron collection efficiency is the fractional number of electron trajectories reaching to the collection plane from the drift plane through the GEM holes. The electron trajectories were estimated based on 3-dimensional (3D) finite element method (FEM). In this paper, we present the primary electron collection efficiency with respect to various GEM operation parameters. This simulation work will be very useful for the better design of the GEM.

A new analysis on timing jitters in APD receivers of optical communication systems when considering intersymbol interferences (APD를 사용하는 광통신 시스템 수신기에서 심벌간 간섭을 고려할 경우 타이밍 지터에 대한 새로운 해석)

  • 신요안;은수정;김부균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.539-546
    • /
    • 1997
  • In this paper, we proposed a new mehtod to analyze the performance degradation by timing jitters in the APD (avalanche photodiode) receivers of intensity modulation/direct detection digital optical communication systems where raised cosine pulse-shaping filters are used to reduce the effect of noise while minimizing intersymbol interferences. The proposed analytical method is an extension of an analytical method we have already developed for pin diode receivers, and incorporates the effects of APD's multiplication factor and resulting shot noise. Using the proposed analytical method, we derive an approximated power penalty due to timing jitters based on an assumption of Gaussian distribution for timing jitters, and compare with that of the conventional analytical method. The results obtained from the proposed analytical method show that conventional analytical methods underestimate the influence of timing jitters on the reciver performance. The results also show that APD's multiplication factor which optimizes receiver sensitivity is smaller than that obtained by the conventional analytical method.

  • PDF

An InGaAs/InAlAs multi-quantum well (MQW) avalanche photodiode (APD) with a spacer layer showing low dark current and high speed (고속 광통신 시스템을 위한 다중양자우물구조의 애벌런치 광다이오드의 설계 및 제작)

  • ;;D.L.Sivco;A.Y.Cho;J.M.M.Rios
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.440-444
    • /
    • 1996
  • In this paper, we report an InGaAs/InAlAs multi-quantum well (MQW) avalanche photodiode (APD) showing a performance suitable for 10 Gbps lightwave communications. In designing the device, emphasis is given on the effect of indiffusion of Be dopant from the highly doped field layer into the MQW multiplication region. It is found that a small amount of diffusion can alter the dark current and gain characteristics of the device significantly. A spacer used to restrain such indiffusion is shown effective in reducing dark current (500 nA at a gain of 10) while maintaining a high bandwidth (10 GHz at a gain of 10) devices grown by molecular beam epitaxy.

  • PDF