• Title/Summary/Keyword: auxiliary principle technique

Search Result 37, Processing Time 0.027 seconds

A Study on Kinematics Modeling and Motion Control Algorithm Development in Joint for Vertical Type Articulated Robot Arma (수직다관절형 아암의 운동학적 모델링 및 관절공간 모션제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Yang, Jun-Seok;Won, Jong-Beom;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2016
  • In this paper, we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Nonlinear in-plane free oscillations of suspended cable investigated by homotopy analysis method

  • Zhao, Yaobing;Sun, Ceshi;Wang, Zhiqian;Peng, Jian
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.487-500
    • /
    • 2014
  • An analytical solution for the nonlinear in-plane free oscillations of the suspended cable which contains the quadratic and cubic nonlinearities is investigated via the homotopy analysis method (HAM). Different from the existing analytical technique, the HAM is indeed independent of the small parameter assumption in the nonlinear vibration equation. The nonlinear equation is established by using the extended Hamilton's principle, which takes into account the effects of the geometric nonlinearity and quasi-static stretching. A non-zero equilibrium position term is introduced due to the quadratic nonlinearity in order to guarantee the rule of the solution expression. Therefore, the mth-order analytic solutions of the corresponding equation are explicitly obtained via the HAM. Numerical results show that the approximate solutions obtained by using the HAM are in good agreement with the numerical integrations (i.e., Runge-Kutta method). Moreover, the HAM provides a simple way to adjust and control the convergent regions of the series solutions by means of an auxiliary parameter. Finally, the effects of initial conditions on the linear and nonlinear frequency ratio are investigated.

Analysis on the Characteristics of Magnetic Amplifier for Multi-output Postregulation (다출력 전원회로의 안정화를 위한 자기증폭기의 특성해석)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Hong, Dae-Shik;Kim, Young-Tae;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.133-135
    • /
    • 2004
  • As a result of the recent advances in magnetic materials, the Magnetic Amplifier(Magamp) technique is one of the reliable and cost-effective postregulation method for multiple-output power supply. This is true for high-current postregulated output since at highter output current the efficiency of linear postregulation is unacceptably low, while the complexity of more efficient switch mode postregulator is associated with a significant cost. Magamp have some advantages of higher power density, simple control circuit, good regulation, high frequency and high performance. In this paper, Operation principle of proposed approach and a performance of magamp control circuit with TL431 is described. The comparative analysis of magamp circuit and buck regulator circuit with 20W load condition is conducted. Experimental verifications on multi-output flyback converter are conducted. Simulations and experimental results show that the proposed approach is efficiency and voltage regulation of the auxiliary output is excellent.

  • PDF

A Robust Adaptive Control of Dual Arm Robot with Eight-Joints Based on DSPs (DSPs 기반 8축 듀얼암 로봇의 견실적응제어)

  • Han, Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1220-1230
    • /
    • 2006
  • In this paper, we propose a flew technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Study on Orchestration in John Williams's Film Score "Star Wars-Main Title" (존 윌리암스의 영화음악 "Star Wars-Main Title"에 나타난 관현악법 연구)

  • Jung, Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5477-5485
    • /
    • 2011
  • This study comparatively analyzed the instrumentation and the voicing structure, which were shown in the film music titled "Star Wars-Main Title" by John Williams(1932~), with analytical technique that the writer mapped out, and aimed to discover the progression principle in orchestration based on the results. Also, it applied a functional part-division method that was classified and distributed into 3 functional parts according to auditory cognitive level as for each of functional elements such as the musical element. And, it made it pattern for the vertical structure and the voicing structure in musical instruments, which were distributed to each functional part based on this, and comparatively analyzed the standard point in a change which were shown according to progression of music, namely, the operating technique. As for the results of this study, first, each theme has specific instrumentation pattern. Unity was emphasized by consistently organizing those things in exposition, reprise, and recapitulation of each theme. To reinforce diversity, an attempt was made such as adding and reducing auxiliary instruments in the middle part and the rear part. Second, even in a change of instrumentation pattern by passage in accordance with a change in theme amid each part, the same instrumental group was organized in the middle part, thereby having maintained unity. Third, to strengthen diversity by clause, which is forming each theme, a continuous change in voicing pattern was created by adding or omitting a part. Fourth, the voicing concentration was maintained the structure of "thinness-thickness" in the whole musical piece. However, in part 2 that is repeated theme 3, diversity was pursued with a unique change of "thickness-thickness." Fifth, in part 4 that is indicated theme 4, the other diversity was intensified with the inverted range in the front part and the middle part. Accordingly, based on the conclusions that were indicated in this work, it is desired to be conducive to understanding the horizontal consideration and the progression principle of orchestration.

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.