• 제목/요약/키워드: auxiliary PID control

검색결과 15건 처리시간 0.04초

선체 횡동요 방지 장치 개발을 위한 실험적 연구 (An Experimental Study on the Development of the Anti-Rolling Control System for a Ship)

  • 김영복;변정환;양주호
    • 한국해양공학회지
    • /
    • 제14권4호
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

선박용 발전기 시스템의 강인 적응형 전압 제어 (Robust Adaptive Voltage Control of Electric Generators for Ships)

  • 조현철
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.

선박의 횡동용 방지 장치 개발에 관한 연구 (A Study on the Design of the Anti-Rolling Control System for a Ship)

  • 김영복;변정환
    • 제어로봇시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.438-444
    • /
    • 2001
  • In this paper, an actively controlled anti-rolling system is considered to reduced the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and the actuator is connected between the auxiliary mass and the ship. The actuator reacts against the auxiliary mass, applying inertial control corves to the ship to reduce the rolling motion in the desired manner. in this paper, we apply the PID controller to design the anit-rolling control system for the controlled hip. And the experimental result shows that the desirable control performance is achieved.

  • PDF

DC 전동기를 위한 PID 학습제어기 (A PID learning controller for DC motors)

  • 백승민;이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.347-350
    • /
    • 1996
  • With only the classical PID controller applied to control of a DC motor, a good (target) performance characteristic of the controller can be obtained, if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are exactly known. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee the good performance which is assumed with precisely known system parameters and operating conditions. In view of this and robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing whose superiority to the conventional fixed PID controller.

  • PDF

DC 전동기를 위한 PID 학습제어기 (A PID learning controller for DC motors)

  • 백승민;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.555-562
    • /
    • 1997
  • With only the classical PID controller applied to control of a DC motor, good (target) performance characteristic of the controller can be obtained if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are known exactly. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee good performance, which is assumed with precisely known system parameters and operating conditions. In view of this and the robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one world wide asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing its superiority to the conventional fixed PID controller.

  • PDF

거리계를 이용한 이동로보트 'KMR-2'의 경로주행제어에 관한 연구 (Path control of a mobile robot 'KMR-2' using odometer system)

  • 조형석;이대업;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.142-147
    • /
    • 1988
  • Free-path-type guidance system does not need a hardwired path in the environment so that it gives a mobile robot a flexible path. ln this study to achieve the free-path-type guidance system for a mobile robot which is steered by the differential steering of both drive forewheels, position recognition systems are constructed using odometer system as an internal position sensor. Two odometer systems, a auxiliary wheel odometer and a 2-encoder odometer system are constructed and path following algorithms using these odometer systems are designed and experimented. PID control type is adopted in the path following algorithms.

  • PDF

PID 구조를 기초로 한 비최소 위상 시스템의 직접적응제어 (Direct Adaptive Control of Nonminimum Phase Systgems based on PID Structures)

  • 김종환;최계근
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.895-901
    • /
    • 1986
  • This paper presents direct adaptive controllers for single-input single-output nonminimum phase systems based on PID structures. Also, characteristics of these schemes are compared, and convergence properties are considered. In these schemes, controller parameters are estimated from the least-square algorithm and some additional auxiliary parameters are obtained from the proposed polynomial identity which is derived from the pole placement equation and the Bezout identity. The effectiveness of these schemes is demonstrated by computer simulation that has been carried out for a very difficult example.

  • PDF

신경회로망을 이용한 직접 자기동조제어기의 설계 (Design of a Direct Self-tuning Controller Using Neural Network)

  • 조원철;이인수
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.264-274
    • /
    • 2003
  • 본 논문에서는 잡음과 시간지연이 존재하며 시스템 파라미터가 변하는 비선형 비최소위상 시스템에 적응하는 신경회로망이 결합된 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. PID구조를 갖는 자기동조는 PID제어기처럼 구조가 간단하고 계통을 정밀하게 제어하는 자기동조 제어기의 특성을 그대로 유지할 수 있다. 일반화 최소분산 자기동조 제어기 파라미터는 비선형 시스템을 선형시스템으로 간주하고 순환최소자승법으로 추정하며 설계계수의 값은 확률근사법인 Robbins-Monro 알고리듬을 이용하여 자동조정하였다. 역전파 학습 알고리듬을 사용하는 신경회로망 제어기는 비선형 부분의 제어를 보상하기 위해 필터된 기준입력과 필터된 플랜트 출력이 같도록 제어값을 출력한다. 컴퓨터 시뮬레이션을 통해 제안한 방법이 시스템의 파라미터가 변하는 비최소위상 시스템에 잘 적응함을 보였다.

시변 주기외란 신호에 대한 강인 적응형 하이브리드 제어시스템 (Robust Adaptive Hybrid Control System against Time-varying Periodic Disturbance Signal)

  • 조현철;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.586-588
    • /
    • 2011
  • Adaptive feedforward control(AFC) is largely aimed for improving control performance of dynamic systems particularly involving periodic disturbance signals in engineering fields. This paper presents a novel hybrid AFC approach for specific systems with multiple disturbances in control input and state variables. The proposed AFC mechanism is hierarchically composed of the conventional AFC and a PID typed auxiliary control law in parallel. The former is generic to decrease periodic disturbance in control actuators and the latter is additionally constructed to overcome control deterioration due to time-varying uncertainty of given systems. We carry out numerical simulation to test reliability of the hybrid AFC system and compare its control performance with a well-known conventional AFC method in terms of time and frequency domains for proving of its superiority.

  • PDF

디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계 (Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor)

    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF