• Title/Summary/Keyword: autoregressive model

Search Result 755, Processing Time 0.028 seconds

Doubly penalized kernel method for heteroscedastic autoregressive datay

  • Cho, Dae-Hyeon;Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.155-162
    • /
    • 2010
  • In this paper we propose a doubly penalized kernel method which estimates both the mean function and the variance function simultaneously by kernel machines for heteroscedastic autoregressive data. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which aect the performance of proposed method. Simulated examples are provided to indicate the usefulness of proposed method for the estimation of mean and variance functions.

The Cusum of Squares Test for Variance Changes in Infinite Order Autoregressive Models

  • Park, Siyun;Lee, Sangyeol;Jongwoo Jeon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • This paper considers the problem of testing a variance change in infinite order autoregressive models. A cusum of squares test based on the residuals from an AR(q) model is constructed analogous to Inclan and Tiao (1994)'s test statistic, where q is a sequence of positive integers diverging to $\infty$. It is shown that under regularity conditions the limiting distribution of the test statistic is the sup of a standard Brownian bridge. Simulation results are given to illustrate the performance of the test.

  • PDF

New Bootstrap Method for Autoregressive Models

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.85-96
    • /
    • 2013
  • A new bootstrap method combined with the stationary bootstrap of Politis and Romano (1994) and the classical residual-based bootstrap is applied to stationary autoregressive (AR) time series models. A stationary bootstrap procedure is implemented for the ordinary least squares estimator (OLSE), along with classical bootstrap residuals for estimated errors, and its large sample validity is proved. A finite sample study numerically compares the proposed bootstrap estimator with the estimator based on the classical residual-based bootstrapping. The study shows that the proposed bootstrapping is more effective in estimating the AR coefficients than the residual-based bootstrapping.

Analysis of statistical models on temperature at the Seosan city in Korea (충청남도 서산시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1293-1300
    • /
    • 2014
  • The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.

Repetitive model refinement for structural health monitoring using efficient Akaike information criterion

  • Lin, Jeng-Wen
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1329-1344
    • /
    • 2015
  • The stiffness of a structure is one of several structural signals that are useful indicators of the amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of motion containing a stiffness parameter must first be established by expansion as a linear series model, a Taylor series model, or a power series model. The model is then used in multivariate autoregressive modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for modeling purposes typically involves the use of one of three statistical model refinement approaches, one of which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added component of the model results in a decrease in the AIC value, compared to the value obtained with the previously added component(s), it is statistically justifiable to retain this new component; otherwise, it should be removed. This model refinement process is repeated until all of the components of the model are shown to be statistically justifiable. In this study, this model refinement approach was compared with the two other commonly used refinement approaches: principal component analysis (PCA) and principal component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach produces more accurate structural stiffness estimates than the other two approaches.

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

Functional Separation of Myoelectric Signal of Human Arm Movements Using Time Series Analysis (시계열 해석을 이용한 팔운동 근전신호의 기능분리)

  • 홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1051-1059
    • /
    • 1992
  • In this paper, two general methods using time-series analysis in the functional separation of the myoelectric signal of human arm movements are developed. Autocorrelation, covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation-out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squared error. With the error signals of autoregressive(AR) model, the result showed that the highest success rate was obtained in the case of 4th order, and success rate was decreased with increase of order. Autocorrelation was the method of choice for better success rate. This technique might be applied to biomedical and rehabilitation engineering.

  • PDF

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

A Study on EMG Signal Processing Using Linear Prediction (선형예측을 이용한 EMG 신호처리에 관한 연구)

  • ;邊潤植;李建基
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.280-291
    • /
    • 1987
  • In this paper, the linear autoregressive model of EMG signal for four basic arm functions was presented and parameters for each function were estimated. The signal identification was carried out using function discrimination algorithm. It was validated that EMG signal was a widesense stationary process and the linear autoregressive model of EMG signal was constructed through approximating it to Gaussian process. It was confined that Levinson-Durbin algoridthm is a more appropriate one than the recursive least square method for parameter estimation of the linear model. Optimal function discrimination was acquired when sampling frequency was 500Hz and two electrodes were attached to bicep and tricep muscle, respectively. Parameter values were independent of variance and the number of minimum data for function discrimination was 200. Bayesian discrimination method turned out to be a better one than parallel filtering method for functional discrimination recognition.

  • PDF