• Title/Summary/Keyword: autophagy-related

Search Result 173, Processing Time 0.021 seconds

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang;Jung, Su Young;Kim, Myung Gu;Kim, Young Il;Kim, Sang Hoon;Yeo, Seung Geun
    • Journal of Audiology & Otology
    • /
    • v.24 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Comparison of Autophagy mRNA Expression between Chronic Otitis Media With and Without Cholesteatoma

  • Jung, Junyang;Jung, Su Young;Kim, Myung Gu;Kim, Young Il;Kim, Sang Hoon;Yeo, Seung Geun
    • Korean Journal of Audiology
    • /
    • v.24 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • Background and Objectives: Autophagy is known to be associated with pathogen infection. However, the expression of autophagy-related proteins has not been studied in chronic otitis media without cholesteatoma (COM) or with cholesteatoma (CholeOM). This study aimed to determine whether there is a difference between COM and CholeOM in autophagy-related gene mRNA expression. Subjects and Methods: For 47 patients with chronic otitis media, the inflammatory tissues were classified into granulation tissue (COM) or cholesteatoma (CholeOM) according to biopsy results. Results: PI3K mRNA expression (COM vs. CholeOM, mean±SD, 0.009±0.010 vs. 0.003±0.004; p=0.004) was lower, whereas Beclin-1 mRNA expression (0.089±0.107 vs. 0.176±0.163; p=0.034) was higher in the CholeOM group. Expression of PI3K mRNA in the CholeOM group was lower than that in the COM subgroups with presence of bacteria (0.022±0.019 vs. 0.001±0.001; p=0.001), otorrhea (0.049±0.068 vs. 0.003±0.004; p=0.004), and hearing loss over 40 dB (0.083±0.130 vs. 0.003±0.004; p=0.005). Conclusions: The data suggested that different autophagy proteins play important roles in chronic otitis media according to the presence or absence of cholesteatoma.

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim;Seon Been Bak;Won-Yung Lee;Su Jin Bae;Eun Hye Lee;Ju-Hye Yang;Kwang Youn Kim;Chang Hyun Song;Sang Chan Kim;Un-Jung Yun;Kwang Il Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

Licochalcone C Induces Autophagy in Gefitinib-sensitive or-resistant Human Non-small Cell Lung Cancer Cells (Gefitinib-민감성 또는 내성 비소세포폐암 세포에서 Licochalcone C에 의한 자가포식 유도)

  • Oh, Ha-Na;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1305-1313
    • /
    • 2019
  • Licochalcone (LC), isolated from the roots of Glycyrrhiza inflata has multiple pharmacological effects including anti-inflammatory and anti-tumor activities. To date, Licochalcone C (LCC) has induced apoptosis and inhibited cell proliferation in oral and bladder cancer cells, but lung cancer has not yet been studied. In addition, no study reported LCC-induced autophagy in cancer until now. The present study was designed to investigate the effect of LCC on gefitinib-sensitive and -resistant lung cancer cells and elucidate the mechanism of its action. The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay data showed that LCC significantly inhibited cell viability in non-small cell lung cancer (NSCLC) HCC827 (gefitinib-sensitive) and HCC827GR (gefitinib-resistant) cell lines. Interestingly, Annexin V/7-aminoactinomycin D double staining and cell cycle analysis showed an apoptosis rate within about 20% at the highest concentration of LCC. LCC induced G2/M arrest by reducing the expression of the cell cycle G2/M related proteins cyclin B1 and cdc2 in NSCLC cell lines. Treatment of LCC also induced autophagy by increasing the expression of the autophagy marker protein microtubule-associated protein 1 light chain 3 (LC3) and the protein autophagy-related gene 5 involved in the autophagy process. In addition, LCC increased the production of reactive oxygen species (ROS), and the cell viability was partially restored by treatment with the ROS inhibitor N-acetyl-L-cysteine. In western blotting analysis, the expression of cdc2 was increased and LC3 was decreased by the simultaneous treatment of NAC and LCC. These results indicate that LCC may contribute to anti-tumor effects by inducing ROS-dependent G2/M arrest and autophagy in NSCLC. In conclusion, LCC treatment may be useful as a potential therapeutic agent against NSCLC.

Effects of Taraxaci Herba on Cell Death in Breast Cancer Cells (포공영(蒲公英)이 유방암 세포의 사멸에 미치는 영향)

  • Seo, Kook-Jang;Park, Kyung-Mi;Joh, Sung-Hee;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2015
  • Objectives : This study was designed to investigate the effects of Taraxaci Herba (TH) on cell death in breast cancer cells. Methods : In this experiment, the effects of TH on proliferation rates, cell morphology and growth pattern, intracellular reactive oxygen species (ROS) production. In addition, the effects on nuclear condensation, fragmentation and formation of acidic vesicular organelles (AVO) in MCF-7 cells were also investigated. Finally, autophagy related with protein was observed by using western blot method. Results : TH inhibited proliferation of MCF-7 cells, TH elevated intracellular ROS levels significantly. Treatment with TH did not affect nuclear morphologies such as condensation or fragmentation. On the other hand, TH treatment effectively induced AVO. Finally, one of autophagy related with protein, Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A, LC3) level was elevated by treatment with TH. Conclusions : These data indicate that TH is able to be used for patient with breast cancer and mechanisms are involved in autophagy through ROS generation.

Remifentanil induces autophagy and prevents hydrogen peroxide-induced apoptosis in Cos-7 cells

  • Yoon, Ji-Young;Baek, Chul-Woo;Woo, Mi-Na;Kim, Eun-Jung;Yoon, Ji-Uk;Park, Chang-Hoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.175-184
    • /
    • 2016
  • Background: This study investigated the effect of remifentanil pretreatment on Cos-7 cells exposed to oxidative stress, and the influence of remifentanil on intracellular autophagy and apoptotic cell death. Methods: Cells were divided into 4 groups: (1) Control: non-pretreated cells were incubated in normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$). (2) $H_2O_2$: non-pretreated cells were exposed to $H_2O_2$ for 24 h. (3) RPC+$H_2O_2$: cells pretreated with remifentanil were exposed to $H_2O_2$ for 24 h. (4) 3-MA+RPC+$H_2O_2$: cells pretreated with 3-Methyladenine (3-MA) and remifentanil were exposed to $H_2O_2$ for 24 h. We determined the cell viability of each group using an MTT assay. Hoechst staining and FACS analysis of Cos-7 cells were performed to observe the effect of remifentanil on apoptosis. Autophagy activation was determined by fluorescence microscopy, MDC staining, and AO staining. The expression of autophagy-related proteins was observed using western blotting. Results: Remifentanil pretreatment increased the viability of Cos-7 cells exposed to oxidative stress. Hoechst staining and FACS analysis revealed that oxidative stress-dependent apoptosis was suppressed by the pretreatment. Additionally, fluorescence microscopy showed that remifentanil pretreatment led to autophagy-induction in Cos-7 cells, and the expression of autophagy-related proteins was increased in the RPC+$H_2O_2$ group. Conclusions: The study showed that remifentanil pretreatment stimulated autophagy and increased viability in an oxidative stress model of Cos-7 cells. Therefore, we suggest that apoptosis was activated upon oxidative stress, and remifentanil preconditioning increased the survival rate of the cells by activating autophagy.

The Effect of Brunfelsia grandiflora Ethanol Extract on the Induction of Autophagy in Human Lung Fibroblasts (사람 폐 섬유아 세포에서 Brunfelsia grandiflora 에탄올 추출물이 Autophagy에 미치는 영향)

  • Nam, Hyang;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.837-842
    • /
    • 2014
  • The purpose of this study was to investigate the effect of Brunfelsia grandiflora ethanol extract (BGEE) on the induction of autophagy via regulation of SIRT1 expression and p53 activation in a human lung fibroblast cell line, IMR 90. BGEE at a concentration of $5{\mu}g/ml$ or more exhibited a cytotoxic effect on IMR 90 cells. For the first time, this study showed that BGEE induces autophagy in normal human lung fibroblasts. BGEE also increased the expression level of beclin-1 at $2.5{\mu}g/ml$ or less and Atg7 at $5{\mu}g/ml$, both of which are known to be involved in the induction of autophagy. In addition, BGEE modulated the expression of other proteins related to autophagy in normal human lung fibroblasts. The expression levels of p53 and p-p53, an active form of p53, were decreased in the presence of BGEE at a noncytotoxic concentration. In contrast, the expression level of SIRT1 was increased in human lung fibroblasts treated with BGEE at a noncytotoxic concentration. Moreover, SA-${\beta}$-Gal staining, an aging marker, was reduced in the normal human lung fibroblasts treated with BGEE. These findings suggest that BGEE promotes the induction of autophagy and antiaging through the modulation of p53 and SIRT1 in human lung fibroblasts.

The Role of Autophagy in Depression (우울증에서 자가소화작용의 역할)

  • Seo, Mi Kyoung;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.812-820
    • /
    • 2022
  • Depression is a psychiatric disorder characterized by depressed mood, anhedonia, fatigue, and altered cognitive function, leading to a decline in daily functioning. In addition, depression is a serious and common mental illness not only in an individual's life but also in society, so it must be actively treated. Autophagy is involved in the pathophysiological mechanism of mental illness. According to a recent study, it is known that autophagy-induced apoptosis affects neuroplasticity and causes depression and that antidepressants regulate autophagy. Autophagy is a catabolic process that degradation and removes unnecessary organelles or proteins through a lysosome. And, it is essential for maintaining cellular homeostasis. Autophagy is activated in stress conditions, and depression is a stress-related disease. Stress causes damage to cellular homeostasis. Recently, although the role of autophagy mechanisms in neurons has been investigated, the autophagy of depression has not been fully studied. This review highlights the new evidence for the involvement of autophagy in the pathophysiological mechanisms and treatment of depression. To highlight the evidence, we present results from clinical and preclinical studies showing that autophagy is associated with depression. Understanding the relevance of autophagy to depression and the limitations of research suggest that autophagy regulation may provide a new direction for antidepressant development.

Induction of Autophagy and Apoptosis by the Roots of Platycodon grandiflorum on NCI-H460 Human Non-small Lung Carcinoma Cells (길경(桔梗)에 의한 NCI-H460 인체 비소세포폐암 세포에서의 autophagy 및 apoptosis 유발 효과)

  • Hong, Su-Hyun;Han, Min-Ho;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • Objectives: The root of Platycodon grandiflorum (PG) has been known to possess a range of pharmacological activities including anti-cancer, anti-inflammatory, and anti-oxidant effects. The present study was designed to investigate whether or not PG-induced cell death was connected with autophagy and apoptosis in NCI-H460 human lung cancer cells. Methods: Effects on the cell viability and apoptotic activity were quantified using MTT assays and flow cytometry analysis, respectively. Protein activation was measured by immunoblotting. Autophagy was measured by LC3 immunofluorescence and immunoblotting. ROS production and loss of mitochondria membrane potential (MMP) were checked with flow cytometry analysis. Results: Following exposure to PG, NCI-H460 cell proliferation decreased simultaneously inducing autophagic vacuoles and up-regulation of microtubule-associated protein 1 light chain 3 and beclin-1 protein expressions. Interestingly, pre-treated with autophagy inhibitors, 3-methyladenin or bafilomycin A1 further triggered reduction of cell viability. PG treatment also induced apoptosis that was related modulation of Bcl-2 family proteins, death receptors and activation of caspases. In addition, PG stimulation clearly enhanced loss of MMP and reactive oxygen species (ROS) generation. Conclusions: Our results suggest that PG elicited both autophagy and apoptosis by increasing loss of MMP and ROS production. PG induced-autophagy may play a cell protective role.