• Title/Summary/Keyword: autophagy-related

Search Result 173, Processing Time 0.027 seconds

Pexophagy: Molecular Mechanisms and Implications for Health and Diseases

  • Cho, Dong-Hyung;Kim, Yi Sak;Jo, Doo Sin;Choe, Seong-Kyu;Jo, Eun-Kyeong
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Youn, Dong Hyuk;Kim, Bong Jun;Hong, Eun Pyo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.236-244
    • /
    • 2022
  • Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid hemorrhage (SAH) patients with delayed cerebral ischemia (DCI). Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology enrichment and the protein-protein interaction network were performed. Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI. Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.

The Role of Autophagy on the Induction of Apoptosis by Water Extracts of Bigihwan, Daechilgitang and Mokwhyangbinranghwan in HepG2 Human Hepatocellular Carcinoma Cells (비기환, 대칠기탕 및 목향빈랑환 열수 추출물에 의한 인간 간세포암종 HepG2 세포의 세포사멸 유도에 미치는 자가포식의 역할)

  • Park, Sang Eun;Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.30 no.2
    • /
    • pp.67-83
    • /
    • 2022
  • Objectives : In this study, the anticancer activity of water extracts of three herbal medicine formulas, Bigihwan (BGH), Daechilgitang (DCGT) and Mokwhyangbinranghwan (MHBRH) listed in Donguibogam, was evaluated in HepG2 cells, a human hepatocellular carcinoma cell line. Methods : We investigated whether the cell viability of HepG2 cells was inhibited by the treatment of water extracts of three prescriptions, and whether their viability inhibitory effect was related to the induction of apoptosis. In addition, the role of autophagy on the induction of apoptosis by the treatment of these extracts was investigated. Results : The anticancer activity of the three water extracts on HepG2 cells was due to induction of apoptosis, not necrosis. Among them, BGH activated the caspase-dependent intrinsic apoptosis pathway associated with mitochondrial dysfunction. However, autophagy was induced more than 2-fold in DCGT-treated HepG2 cells, and the anticancer activity of DCGT was enhanced 1.5-fold in the presence of an autophagy inhibitor, but was attenuated in BGH and MHBRH-treated cells. Conclusion : The results of this study indicate that DCGT-induced autophagy was involved in the inhibition of apoptosis, whereas autophagy by BGH and MHBRH was related to induction of apoptosis.

Effect of Orostachys japonicus on Apoptosis and Autophagy in Human monocytic leukemia Cell line THP-1 via Inhibition of NF-κB and Phosphorylation of p38 MAPK (와송이 인간 백혈병 세포주 THP-1에서 NF-κB 활성 억제와 p38 활성을 통해 세포사멸과 자가포식에 미치는 영향)

  • Joo, Seonghee;Jang, Eungyeong;Kim, Youngchul
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.35-50
    • /
    • 2019
  • Objectives: Orostachys japonicas (O. japonicus) has been known for its anti-tumor effect. In the present study, it was investigated whether O. japonicus EtOH extracts could induce apoptosis and autophagy which are part of the main mechanism related to anti-tumor effect in THP-1 cells. Methods: Cells were treated with various concentrations of O. japonicus EtOH extracts ($0-300{\mu}g/ml$) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay and apoptosis rate was examined by flow cytometry and ELISA assay. The mRNA expression of apoptosis-related genes (Bcl-2, Mcl-1, Survivin, Bax) and autophagy-related gene (mTOR) was evaluated using real-time PCR. The protein expression of Caspase-3, Akt, LC3 II, Beclin-1, Atg5, $NF-{\kappa}B$, p38, ERK was evaluated using western blot analysis. Results: O. japonicus EtOH extracts inhibited cell proliferation and apoptosis rate was increased in both flow cytometry and ELISA assay. Bcl-2, Mcl-1, Survivin (anti-apoptosis factors) mRNA expressions were decreased and Bax (pro-apoptosis factor) mRNA level was increased. mTOR mRNA expressions was decreased and LC3 II protein expressions was increased. Activation of $NF-{\kappa}B$ was decreased and phosphorylation of p38 was increased. Conclusion: O. japonicus is regarded to inhibit cell proliferation, to induce apoptosis and to regulate autophagy-related genes in THP-1 cells via $NF-{\kappa}B$ and p38 MAPK signaling pathway. This suggests O. japonicus could be an effective herb in treating acute myeloid leukemia.

The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease

  • Shin, Woo Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we'll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson's disease, one of the major neurodegenerative diseases, will be briefly reviewed.

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin;Qu, Yuliang;Yang, Shaoqi;Zhao, Ya'e;Xu, Guangxian
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.989-998
    • /
    • 2019
  • Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats

  • Seo, Dae Yun;Bae, Jun Hyun;Zhang, Didi;Song, Wook;Kwak, Hyo-Bum;Heo, Jun-Won;Jung, Su-Jeen;Yun, Hyeong Rok;Kim, Tae Nyun;Lee, Sang Ho;Kim, Amy Hyein;Jeong, Dae Hoon;Kim, Hyoung Kyu;Han, Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.575-580
    • /
    • 2021
  • Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.