• 제목/요약/키워드: autophagy

검색결과 472건 처리시간 0.025초

Aqueous Extract of Anticancer Drug CRUEL Herbomineral Formulation Capsules Exerts Anti-proliferative Effects in Renal Cell Carcinoma Cell Lines

  • Verma, Shiv Prakash;Sisoudiya, Saumya;Das, Parimal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8419-8423
    • /
    • 2016
  • Purpose: Anti-cancer activity evaluation of aqueous extract of CRUEL (herbomineral formulation) capsules on renal cell carcinoma cell lines, and exploration of mechanisms of cell death. Materials and Methods: To detect the cytotoxic dose concentration in renal cell carcinoma (RCC) cells, MTT assays were performed and morphological changes after treatment were observed by inverted microscopy. Drug effects against RCC cell lines were assessed with reference to cell cycle distribution (flow cytometry), anti-metastatic potential (wound healing assay) and autophagy(RT-PCR). Results: CRUEL showed anti-proliferative effects against RCC tumor cell lines with an IC50 value of ${\approx}4mg/mL$ in vitro., while inducing cell cycle arrest at S-phase of cell cycle and inhibiting wound healing. LC3 was found to be up-regulated after drug treatment in RT-PCR resulting in an autophagy mode of cell death. Conclusions: This study provides the experimental validation for antitumor activity of CRUEL.

Asiatic Acid Induces Apoptosis and Autophagy and Reduces MiR-17 and MiR-21 Expression in Pancreatic Cancer Cell Lines

  • Jo, Yoon-Gyung;Kim, Myoungjae;Shin, Hyeji;Lee, Ki Yong;Lee, Eun Joo
    • Natural Product Sciences
    • /
    • 제25권4호
    • /
    • pp.298-303
    • /
    • 2019
  • This study investigated the cytotoxic effects and mechanism of action of asiatic acid in pancreatic cancer cell lines. First, we confirmed the cell viability of MIA PaCa-2 and PANC-1 cells after asiatic acid administration for 48 and 72 h. The viability of MIA PaCa-2 and PANC-1 cells decreased in a dose-dependent manner following asiatic acid administration. To investigate the underlying mechanism, we performed a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, annexin V assay, and western blotting. Asiatic acid induced apoptosis and autophagy through activation of AMP-activated protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) in MIA PaCa-2 cells. Finally, the expression of miR-17 and miR-21, known as oncogenes in pancreatic cancer, was decreased by asiatic acid. These results indicate that asiatic acid has potential as a new therapeutic agent against pancreatic cancer.

Metformin Synergistically Potentiates the Antitumor Effects of Imatinib in Colorectal Cancer Cells

  • Lee, Jaeryun;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권2호
    • /
    • pp.139-150
    • /
    • 2017
  • Metformin is the most commonly prescribed anti-diabetic drug with relatively minor side effect. Substantial evidence has suggested that metformin is associated with decreased cancer risk and anticancer activity against diverse cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity for treatment of chronic myeloid leukemia and also induces growth arrest and apoptosis in colorectal cancer cells. In this study, we tested the combination of imatinib and metformin against HCT15 colorectal cancer cells for effects on cell viability, cell cycle and autophagy. Our data show that metformin synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated by combination and drug reduction indices. We also demonstrate that the combination causes synergistic down-regulation of pERK, cell cycle arrest in S and $G_2/M$ phases via reduction of cyclin B1 level. Moreover, the combination resulted in autophagy induction as revealed by increased acidic vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic process by chloroquine led to decreased cell viability, suggesting that induction of autophagy seems to play a cell protective role that may act against anticancer effects. In conclusion, our present data suggest that metformin in combination with imatinib might be a promising therapeutic option in colorectal cancer.

Autophagy-associated Targeting Pathways of Natural Products during Cancer Treatment

  • Zhang, Shu-Fang;Wang, Xiao-Lu;Yang, Xiao-Qi;Chen, Ning
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10557-10563
    • /
    • 2015
  • It is well known that conventional chemotherapy and radiation therapy can result in toxicity to both normal cells and tumor cells, which causes limitations in the application of these therapeutic strategies for cancer control. Novel and effective therapeutic strategies for cancers with no or low toxicity for normal cells are a high priority. Therefore, natural products with anticancer activity have gained more and more attention due to their favorable safety and efficacy profiles. Pre-clinical and clinical studies have demonstrated that several representative natural compounds such as resveratrol, epigallocatechin-3-gallate, curcumin, allicin and ginsenosides have obvious anticancer potential. In this article, we summarize autophagy-associated targeting pathways of such natural products for inducing the death of cancer cells, and discuss the core autophagic pathways involved in cancer treatments. Recent advances in the discovery, evaluation and exploitation of natural compounds as therapeutic agents for cancers will provide references and support in pre-clinical and clinical application of novel natural drugs for the treatment of primary and metastatic tumors in the future.

CRISPR system for genome engineering: the application for autophagy study

  • Cui, Jianzhou;Chew, Shirley Jia Li;Shi, Yin;Gong, Zhiyuan;Shen, Han-Ming
    • BMB Reports
    • /
    • 제50권5호
    • /
    • pp.247-256
    • /
    • 2017
  • CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research.

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

점액표피양암종 세포주에서 Kochia scoparia 추출물의 세포자멸과 자가포식 유도 효과 (Apoptosis and Autophagy Induced by Methanol Extract of Kochia scoparia in Human Mucoepidermoid Carcinoma Cell Line)

  • 도미향;유미현;김욱규
    • 대한구강악안면병리학회지
    • /
    • 제42권6호
    • /
    • pp.167-174
    • /
    • 2018
  • Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.

Immunostimulatory Activity of Syneilesis palmata Leaves through Macrophage Activation and Macrophage Autophagy in Mouse Macrophages, RAW264.7 Cells

  • So Jung Park;Jeong Won Choi;Hyeok Jin Choi;Seung Woo Im;Jin Boo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권7호
    • /
    • pp.934-940
    • /
    • 2023
  • Syneilesis palmata (SP) is a traditional medicinal plant. SP has been reported to have anti-inflammatory, anticancer, and anti-human immunodeficiency virus (HIV) activities. However, there is currently no research available on the immunostimulatory activity of SP. Therefore, in this study, we report that S. palmata leaves (SPL) activate macrophages. Increased secretion of both immunostimulatory mediators and phagocytic activity was observed in SPL-treated RAW264.7 cells. However, this effect was reversed by the inhibition of TLR2/4. In addition, inhibition of p38 decreased the secretion of immunostimulatory mediators induced by SPL, and inhibition of TLR2/4 decreased the phosphorylation of p38 induced by SPL. SPL augmented p62/SQSTM1 and LC3-II expression. The increase in protein levels of p62/SQSTM1 and LC3-II induced by SPL was decreased by the inhibition of TLR2/4. The results obtained from this study suggest that SPL activates macrophages via TLR2/4-dependent p38 activation and induces autophagy in macrophages via TLR2/4 stimulation.

The Cone (Pinus densiflora) Induced Apoptosis and Autophagy in Hepatic Stellate Cells

  • Tae-Won Jang;Da-Yoon Lee;So-Yeon Han;Hye-Jeong Park;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.106-106
    • /
    • 2022
  • The cone of Red Pine (Pinus densiflora), which has been used as a drug in traditional medicine. Its ethyl acetate fraction was reported to exert antioxidant, anti-melanogenesis, and anti-inflammation activites. Apoptosis of hepatic stellate cells (LX-2) is regarding as a potential strategy for alleviation of hepatic fibrosis. We conducted to investigated whether the treatment of cone has a potential to control of some factors related in apoptosis and autophagy in cell signaling pathways. We suggest that the cone induced apoptosis through confirming the expression levels of genes (cPARP, Bcl-XL, Bax, p53, and caspase-3) in LX-2 cells. Also, the cone may regulate autophagy (LC3, p62, Beclin-1, and ATG12). Remarkably, the treatment of cone may affect to formation of autophagosomes in the immunofluorescence image in live cells. These findings suggest that the ethyl acetate fraction from the cone of Red Pine (P. densiflora) may have potential as an alternative therapeutic agent for the alleviation and prevention of liver fibrosis.

  • PDF

Propofol Post-conditioning Protects against COS-7 Cells in Hypoxia/reoxygenation Injury by Induction of Intracellular Autophagy

  • Kwak, Jin-Won;Kim, Eok-Nyun;Park, Bong-Soo;Kim, Yong-Ho;Kim, Yong-Deok;Yoon, Ji-Uk;Kim, Cheul-Hong;Yoon, Ji-Young
    • 대한치과마취과학회지
    • /
    • 제14권1호
    • /
    • pp.49-56
    • /
    • 2014
  • Background: Propofol (2.6-diisopropylphenol) is a widely used intravenous anesthetic agent for the induction and maintenance of anesthesia during surgeries and sedation for ICU patients. Propofol has a structural similarity to the endogenous antioxidant vitamin E and exhibits antioxidant activities.13) However, the mechanism of propofol on hypoxia/reoxygenation (H/R) injury has yet to be fully elucidated. We investigated how P-PostC influences the autophagy and cell death, a cellular damage occurring during the H/R injury. Methods: The groups were randomly divided into the following groups: Control: cells were incubated in normoxia (5% CO2, 21% O2, and 74% N2) without propofol treatment. H/R: cells were exposed to 24 h of hypoxia (5% CO2, 1% O2, and 94% N2) followed by 12 h of reoxygenation (5% CO2, 21% O2, and 74% N2). H/R + P-PostC: cells post-treated with propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation. 3-MA + P-PostC: cells pretreated with 3-MA and post-treated propofol were exposed to 24 h of hypoxia followed by 12 h of reoxygenation Results: The results of our present study provides a new direction of research on mechanisms of propofol-mediated cytoprotection. There are three principal findings of these studies. First, the application of P-PostC at the onset of reoxygenation after hypoxia significantly increased COS-7 cell viability. Second, the cellular protective effect of P-PostC in H/R induced COS-7 cells was probably related to activation of intra-cellular autophagy. And third, the autophagy pathway inhibitor 3-MA blocked the protective effect of P-PostC on cell viability, suggesting a key role of autophagy in cellular protective effect of P-PostC. Conclusions: These data provided evidence that P-PostC reduced cell death in H/R model of COS-7 cells, which was in agreement with the protection by P-PostC demonstrated in isolated COS-7 cells exposed to H/R injury. Although the this study could not represent the protection by P-PostC in vivo, the data demonstrate another model in which endogenous mechanisms evoked by P-PostC protected the COS-7 cells exposed to H/R injury from cell death.