Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.5.044

CRISPR system for genome engineering: the application for autophagy study  

Cui, Jianzhou (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore)
Chew, Shirley Jia Li (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore)
Shi, Yin (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore)
Gong, Zhiyuan (Department of Biological Sciences, National University of Singapore)
Shen, Han-Ming (Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore)
Publication Information
BMB Reports / v.50, no.5, 2017 , pp. 247-256 More about this Journal
Abstract
CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research.
Keywords
Autophagy; CRISPR/Cas9; gRNA; Off-target; PAM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mout R, Ray M, Yesilbag Tonga G et al (2017) Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing. ACS Nano 11, 2452-2458   DOI
2 Jiang C, Mei M, Li B et al (2017) A non-viral CRISPR/Cas9 delivery system for therapeutic gene targeting in vivo. Cell Res 27, 440-443   DOI
3 Cho SW, Lee J, Carroll D, Kim JS and Lee J (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 1177-1180   DOI
4 Jiang W, Zhou H, Bi H, Fromm M, Yang B and Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188   DOI
5 Jackson AL and Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57-67   DOI
6 Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832   DOI
7 Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX and Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88   DOI
8 Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495   DOI
9 Wu YT, Tan HL, Shui G et al (2010) Dual Role of 3-Methyladenine in Modulation of Autophagy via Different Temporal Patterns of Inhibition on Class I and III Phosphoinositide 3-Kinase. J Biol Chem 285, 10850-10861   DOI
10 Yang YP, Hu LF, Zheng HF et al (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34, 625-635   DOI
11 Yuan N, Song L, Zhang S et al (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100, 345-356   DOI
12 Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ and Thorburn A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8, 200-212   DOI
13 Liu Y, Lin J, Zhang M et al (2016) PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Dev Biol 419, 357-372   DOI
14 Sasaki T, Lian S, Khan A et al (2017) Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 13, 386-403   DOI
15 Padman BS, Nguyen TN and Lazarou M (2017) Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Autophagy 13, 1-3   DOI
16 Horne DJ, Graustein AD, Shah JA et al (2016) Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection. J Infect Dis 214, 1260-1267   DOI
17 Wang J, Fang Y, Yan L et al (2016) Erythroleukemia cells acquire an alternative mitophagy capability. Sci Rep 6, 24641   DOI
18 Kim NY, Han BI and Lee M (2016) Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett 370, 19-26   DOI
19 Cao Y, Cai J, Li X, Yuan N and Zhang S (2016) Autophagy governs erythroid differentiation both in vitro and in vivo. Hematology 21, 225-233   DOI
20 Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433   DOI
21 Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826   DOI
22 Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771   DOI
23 Niu JW, Zhang B and Chen H (2014) Applications of TALENs and CRISPR/Cas9 in Human Cells and Their Potentials for Gene Therapy. Mol Biotechnol 56, 681-688   DOI
24 Stranneheim H and Lundeberg J (2012) Stepping stones in DNA sequencing. Biotechnol J 7, 1063-1073   DOI
25 Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by contextdependent assembly (CoDA). Nat Methods 8, 67-69   DOI
26 Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31, 1137-1142   DOI
27 Uhde-Stone C, Gor N, Chin T, Huang J and Lu B (2013) A do-it-yourself protocol for simple transcription activator-like effector assembly. Biol Proced Online 15, 3   DOI
28 Mizushima N (2007) Autophagy: process and function. Genes Dev 21, 2861-2873   DOI
29 DeJesus R, Moretti F, McAllister G et al (2016) Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. 5. Elife e17290
30 Ohshima J, Lee Y, Sasai M et al (2014) Role of mouse and human autophagy proteins in IFN-gamma-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 192, 3328-3335   DOI
31 Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23, 1233   DOI
32 Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112, 1809-1820   DOI
33 Hatoum-Aslan A, Maniv I, Samai P and Marraffini LA (2014) Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System. J Bacteriol 196, 310-317   DOI
34 Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838   DOI
35 Cho SW, Kim S, Kim JM and Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232   DOI
36 Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465-472   DOI
37 Jiang W, Maniv I, Arain F, Wang Y, Levin BR and Marraffini LA (2013) Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids. PLoS Genet 9, e1003844   DOI
38 Xie K and Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6, 1975-1983   DOI
39 Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686-688   DOI
40 Yue Z, Jin S, Yang C, Levine AJ and Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100, 15077-15082   DOI
41 Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434   DOI
42 Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889   DOI
43 Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036   DOI
44 Qu X, Zou Z, Sun Q et al (2007) Autophagy genedependent clearance of apoptotic cells during embryonic development. Cell 128, 931-946   DOI
45 O’Prey J, Sakamaki J, Baudot A et al (2017) Application of CRISPR/Cas9 to Autophagy Research. Methods Enzymol 588, 79-108
46 Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433   DOI
47 Barrangou R and van der Oost J (2012) CRISPR-Cas systems: RNA-mediated adaptive immunity in bacteria and archaea. Springer Science & Business Media 1-31
48 Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM and Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10, 741-743   DOI
49 Fodor E, Sigmond T, Ari E et al (2017) Methods to Study Autophagy in Zebrafish. Methods Enzymol 588, 467-496
50 Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029-1035   DOI
51 DiCarlo JE, Norville JE, Mali P, Rios X, Aach J and Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41, 4336-4343   DOI
52 Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182   DOI
53 Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71   DOI
54 Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607   DOI
55 Waaijers S, Portegijs V, Kerver J et al (2013) CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans. Genetics 195, 1187-1191   DOI
56 Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH and Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51, 835-843   DOI
57 Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688-691   DOI
58 Nekrasov V, Staskawicz B, Weigel D, Jones JD and Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691-693   DOI
59 Dickinson DJ, Ward JD, Reiner DJ and Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10, 1028-1034   DOI
60 Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586   DOI
61 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNAguided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
62 Xie S, Shen B, Zhang C, Huang X and Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9, e100448   DOI
63 Horvath P and Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170   DOI
64 Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845   DOI
65 Hale CR, Zhao P, Olson S et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956   DOI
66 Barrangou R and Marraffini LA (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 54, 234-244   DOI
67 Tang Y, Li J, Li F et al (2015) Autophagy protects intestinal epithelial Cells against Deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radi Biol Med 89, 944-951   DOI
68 Bikard D, Jiang W, Samai P, Hochschild A, Zhang F and Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429-7437   DOI
69 Gilbert LA, Larson MH, Morsut L et al (2013) CRISPRmediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451   DOI
70 Suzuki H, Kaizuka T, Mizushima N and Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22, 572-580   DOI
71 Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278   DOI
72 Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F (2013) Genome engineering using the CRISPRCas9 system. Nat Protoc 8, 2281-2308   DOI
73 Jinek M, Jiang F, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997   DOI
74 Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949   DOI
75 Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Ann Rev Biophys 46, 1   DOI
76 Stavoe AK, Hill SE, Hall DH and Colon-Ramos DA (2016) KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev Cell 38, 171-185   DOI
77 Allavena G, Boyd C, Oo KS, Maellaro E, Zhivotovsky B and Kaminskyy VO (2016) Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation. Autophagy 12, 2085-2097   DOI
78 Kaizuka T and Mizushima N (2016) Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol 36, 585-595   DOI
79 Tsuboyama K, Koyama-Honda I, Sakamaki Y, Koike M, Morishita H and Mizushima N (2016) The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science 354, 1036-1041   DOI
80 Sternberg SH, Redding S, Jinek M, Greene EC and Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67   DOI
81 Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485   DOI
82 Yamano T, Nishimasu H, Zetsche B et al (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 165, 949-962   DOI
83 Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736   DOI
84 Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239   DOI
85 Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918   DOI
86 Fulcher LJ, Macartney T, Bozatzi P, Hornberger A, Rojas-Fernandez A and Sapkota GP (2016) An affinitydirected protein missile system for targeted proteolysis. Open Biol 6, 160255   DOI
87 Tan X, Thapa N, Liao Y, Choi S and Anderson RA (2016) PtdIns (4, 5) P2 signaling regulates ATG14 and autophagy. Proc Natl Acad Sci U S A 113, 10896-10901   DOI
88 Corcelle-Termeau E, Vindelov SD, Hamalisto S et al (2016) Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy 12, 833-849   DOI
89 Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823   DOI
90 Xu T, Li Y, Van Nostrand JD, He Z and Zhou J (2014) Cas9-based tools for targeted genome editing and transcriptional control. Appl Environ Microbiol 80, 1544-1552   DOI
91 Shen B, Brown KM, Lee TD and Sibley LD (2014) Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 5, e01114-01114
92 Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389   DOI
93 Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183   DOI
94 Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25, 1298-1306   DOI
95 Schwank G, Koo BK, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653-658   DOI
96 Smith C, Gore A, Yan W et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12-13   DOI
97 Ousterout DG, Kabadi AM, Thakore PI, Majoros WH and Reddy TE (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6, 6244   DOI
98 Pan Y, Xiao L, Li AS et al (2013) Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55, 54-62   DOI
99 Liu R, Paxton WA, Choe S et al (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367-377   DOI
100 Musunuru K, Pirruccello JP, Do R et al (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 363, 2220-2227   DOI
101 Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA and Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12, 393-394   DOI
102 Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826   DOI
103 Sander JD and Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355   DOI