International journal of advanced smart convergence
/
제10권4호
/
pp.263-272
/
2021
At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.
V2X를 활용한 자율주행차량은 기존의 자율주행차량보다 더욱 많은 정보를 바탕으로 자율주행차량의 센서 커버리지 밖의 영역의 정보를 통하여 안전한 주행이 가능하다. V2X 기술이 자율주행차량의 핵심 구성 요소로 부각되면서 V2X 보안 문제에 대해 연구가 활발히 진행되고 있지만 자율주행차량이 V2X의 의존도가 높은 자율주행시스템에서 V2X 통신의 고장으로 인한 위험성에 대한 부분은 상대적으로 부각되고 있지 않으며 관련 연구도 미진한 편이다. 본 논문에서는 자율주행차량의 교차로 시나리오를 제시하여 V2X를 활용한 자율주행시스템의 서비스 시나리오를 정의 하였으며 이를 기반으로 기능을 도출하고 V2X의 위험 요인을 분석하여 오작동을 정의하였다. ISO26262 Part3 프로세스를 활용하여 HARA 및 고장 주입 시나리오의 시뮬레이션을 통해 V2X 모듈의 고장으로 인한 위험성과 이를 확인하는 검증 과정을 제시하였다.
This paper presents a simulation tool for developing and evaluating automated driving systems' lane change algorithm in urban congested traffic. The behavior of surrounding vehicles was modeled based on driver driving data measured in urban congested traffic. Surrounding vehicles are divided into aggressive vehicles and non-aggressive vehicles. The degree of aggressiveness is determined according to the lateral position to initiate interaction with the vehicle in the next lane. In addition, the desired velocity and desired time gap of each vehicle are all randomly assigned. The simulation was conducted by reflecting the cognitive limitations and control performance of the autonomous vehicle. It was possible to confirm the change in the lane change performance according to the variation of the lane change decision algorithm.
International Journal of Internet, Broadcasting and Communication
/
제14권1호
/
pp.194-200
/
2022
As of 2020, the cumulative number of electric vehicles worldwide increased 43% from 2019, exceeding 10 million. We surveyed and analyzed important factors when purchasing electric vehicles for consumers who own electric vehicles. Through this, we tried to find an effective way to supply electric vehicles in the future. The purpose of this study is to present customized marketing proposals for companies by empirically analyzing the factors affecting consumers' electric vehicle purchases and deriving market demands for electric vehicles. We identified the market status of electric vehicles through literature research and reviewed previous studies on the factors affecting the purchase intention of electric vehicles. Through empirical studies, differences in electric vehicle purchase factors according to gender, age, and the degree of importance of performance were analyzed. To this end, the SPSS statistics package was used. Factors influencing the purchase of electric vehicles were set to mileage, charging time, new technology, degree of driving autonomous development, design, price, infrastructure for charging, the phase of maintenance and repair, by the government and local governments. In addition, the most important factors were derived, and the average difference analysis was conducted according to gender, age, and performance importance.
In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.67-72
/
2023
In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.
The advancement of autonomous driving technology is expected to transform cars beyond mere transportation into multifunctional spaces for relaxation and entertainment. As autonomous driving technology becomes more sophisticated, with no need for direct driver control, the interior space of vehicles is anticipated to be utilized for various purposes. Consequently, the importance of car seats, the component most frequently interacted with by passengers during travel, is expected to significantly rise. However, existing car seats are designed according to a seated posture, necessitating verification for passenger safety and seat structure considerations in the context of autonomous driving, where comfortable postures may differ. For these reasons, it is anticipated that the seats of future autonomous vehicles will evolve with the incorporation of additional safety and convenience features. In this study, a three-axis car simulator was employed to investigate seat angles for comfortable postures of passengers in autonomous driving scenarios. Representative postures were identified to enhance passenger convenience. Furthermore, functional design factors contributing to passenger comfort were applied to conduct seat design, seat structure, and collision analysis, with an analysis of the interrelationships among design factors.
자율주행 과실 여부 판단 위한 방법으로 수학적인 모형인 responsibility-sensitive safety(RSS)를 제시된 이후로 자율주행 관련 산업으로부터 많은 관심을 받고 있다. 하지만, 이러한 수학적 모형이 자율주행자동차가 관련된 교통사고 발생 시 책임소재를 명확히 하는 데 활용될 수 있는 지에 대한 종합적인 검토는 부족한 실정이다. 본 연구에서는 RSS 모형의 적용성과 활용을 위해서 추가적으로 해결되어야 할 사항에 대하여 분석하였다. 결론적으로 RSS 모형을 활용하기에는 모형식 자체 및 수용성 등에 한계가 있으며, RSS 모형을 실무적으로 사용하려고 한다면 자율주행자동차의 반응시간을 정의하고, 자율주행자동차별로 적절한 기술수준에 따라서 반응시간 값을 측정하고 관리할 필요가 있는 것으로 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.5842-5861
/
2019
A current autonomous vehicle determines its driving strategy by considering only external factors (Pedestrians, road conditions, etc.) without considering the interior condition of the vehicle. To solve the problem, this paper proposes "An Optimal Driving Support Strategy(ODSS) based on an Genetic Algorithm for Autonomous Vehicles" which determines the optimal strategy of an autonomous vehicle by analyzing not only the external factors, but also the internal factors of the vehicle(consumable conditions, RPM levels etc.). The proposed ODSS consists of 4 modules. The first module is a Data Communication Module (DCM) which converts CAN, FlexRay, and HSCAN messages of vehicles into WAVE messages and sends the converted messages to the Cloud and receives the analyzed result from the Cloud using V2X. The second module is a Data Management Module (DMM) that classifies the converted WAVE messages and stores the classified messages in a road state table, a sensor message table, and a vehicle state table. The third module is a Data Analysis Module (DAM) which learns a genetic algorithm using sensor data from vehicles stored in the cloud and determines the optimal driving strategy of an autonomous vehicle. The fourth module is a Data Visualization Module (DVM) which displays the optimal driving strategy and the current driving conditions on a vehicle monitor. This paper compared the DCM with existing vehicle gateways and the DAM with the MLP and RF neural network models to validate the ODSS. In the experiment, the DCM improved a loss rate approximately by 5%, compared with existing vehicle gateways. In addition, because the DAM improved computation time by 40% and 20% separately, compared with the MLP and RF, it determined RPM, speed, steering angle and lane changes faster than them.
본 연구는 자율주행 차량이 혼재된 교통류의 안전성 평가에 적합한 안전성 지표를 선정하여 차량 추종 조합별 안전성을 분석하였다. 고속도로 엇갈림구간은 기본구간에 비해 차로 변경이 빈번하여 상충 빈도가 높은 구간으로, 일반 차량과 자율주행 차량의 주행행태 차이로 인한 위험이 증가할 것으로 예상하여 고속도로 엇갈림구간을 분석구간으로 설정하였다. 미시적 교통 시뮬레이션인 VISSIM을 활용하여 분석을 수행하였으며, 혼합 교통류의 환경은 본선-연결로 형태의 엇갈림구간을 300, 600m의 길이로 구분하고, IDM을 활용하여 자율주행 차량의 주행행태를 구현하였다. 혼합 교통류 평가에 적합한 안전성 지표는 운전자가 체감하는 위험도와 유사하게 위험 수준을 나타내는 것을 기준으로 4개의 지표를 선정하였다. 선정된 4개 지표의 위험 기준을 넘는 차량 추종 궤적을 대상으로 안전성을 분석한 결과, 자율주행 차량이 자율주행 차량을 추종하는 상황이 가장 안전한 추종 쌍이며, 인간 운전자 차량이 자율주행 차량을 추종할 경우가 가장 위험한 추종 쌍인 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.