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Abstract 
 

A current autonomous vehicle determines its driving strategy by considering only external 
factors (Pedestrians, road conditions, etc.) without considering the interior condition of the 
vehicle. To solve the problem, this paper proposes “An Optimal Driving Support 
Strategy(ODSS) based on an Genetic Algorithm for Autonomous Vehicles” which determines 
the optimal strategy of an autonomous vehicle by analyzing not only the external factors, but 
also the internal factors of the vehicle(consumable conditions, RPM levels etc.). The proposed 
ODSS consists of 4 modules. The first module is a Data Communication Module (DCM) 
which converts CAN, FlexRay, and HSCAN messages of vehicles into WAVE messages and 
sends the converted messages to the Cloud and receives the analyzed result from the Cloud 
using V2X. The second module is a Data Management Module (DMM) that classifies the 
converted WAVE messages and stores the classified messages in a road state table, a sensor 
message table, and a vehicle state table. The third module is a Data Analysis Module (DAM) 
which learns a genetic algorithm using sensor data from vehicles stored in the cloud and 
determines the optimal driving strategy of an autonomous vehicle. The fourth module is a Data 
Visualization Module (DVM) which displays the optimal driving strategy and the current 
driving conditions on a vehicle monitor. This paper compared the DCM with existing vehicle 
gateways and the DAM with the MLP and RF neural network models to validate the ODSS. In 
the experiment, the DCM improved a loss rate approximately by 5%, compared with existing 
vehicle gateways. In addition, because the DAM improved computation time by 40% and 20% 
separately, compared with the MLP and RF, it determined RPM, speed, steering angle and 
lane changes faster than them. 
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1. Introduction 

In the auto industry, various researches are conducted to develop self-driving cars that can 
drive on their own without driver's or passenger's manipulation, to provide drivers with 
various conveniences. Self-driving cars are classified into six levels by the Society of 
Automotive Engineers (SAE) International. The 0th stage is non-automated, the 1st stage is 
driver-assisted, the 2nd stage is partially self-driving, the 3rd stage is conditional self-driving, 
the 4th stage is advanced self-driving and the 5th stage is complete self-driving [1].  

Currently, the conditional self-driving technology, which is in the 3th stage, is becoming 
more popular and the global companies are developing technologies for advanced self-driving 
cars, which is in the 4th stage. Self-driving cars are being developed based on various ICT 
technologies, and the principle of operation can be classified into three levels of recognition, 
judgment and control. Among them, recognition is the most important technology for 
self-driving cars. It is important to quickly and accurately recognise the surrounding situation 
and information so that appropriate judgement and control can be made. The recognition step 
is to recognize and collect information about surrounding situations by utilizing various 
sensors in vehicles such as GPS, camera, and radar. The judgment step determines the driving 
strategy based on the recognized information. Then, this step identifies and analyzes the 
conditions in which the vehicle is placed, and determines the driving plans appropriate to the 
driving environment and the objectives. The control step determines the speed, direction, etc. 
about the driving and the vehicle starts driving on its own. An autonomous driving vehicle 
performs various actions to arrive at its destination, repeating the steps of recognition, 
judgment and control on its own [2]. 

However, as the performance of self-driving cars improves, the number of sensors to 
recognize data is increasing. The increase of these sensors can cause the in-vehicle overload. 
Self-driving cars use in-vehicle computers to compute data collected by sensors. As the 
amount of the computed data increases, it can affect the speed of judgment and control because 
of the overload. These problems can threaten the stability of the self-driving cars. Thus, to 
reduce the overload, some studies have developed hardware that can perform deep-running 
operations inside the vehicle, while others use the cloud to compute the vehicle's sensor data. 
On the other hand, existing studies use only real-time data such as images and sensor data 
currently collected from vehicles to determine how the vehicle is driving. 

This paper proposes an Optimal Driving Support Strategy (ODSS) which stores historical 
data in the cloud, reduces the in-vehicle computation by generating big data on vehicle driving 
within the cloud and determines an optimal driving strategy by taking into account the 
historical data in the cloud. The proposed ODSS consists of 4 modules. First, a Data 
Communication Module (DCM) converts CAN, FlexRay, and HSCAN messages of vehicles 
into WAVE messages and sends the converted messages to the Cloud using V2X 
communication. Second, a Data Management Module (DMM) classifies the converted WAVE 
messages and stores the classified messages in a road state table, a sensor message table, and a 
vehicle state table. Third, The DMM sends the messages stored in these tables to a Data 
Analysis Module(DAM), which analyzes them to determine the optimal driving strategy by 
using a Genetic algorithm stored in the Cloud. Fourth, a Data Visualization Module (DVM) 
displays the optimal driving strategy determined in the DAM and the current driving 
conditions on the vehicle display for easy recognition by the occupants of the autonomous 
vehicle.  
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   This paper consists of 5 sections as follows. Section 2 explains the conventional methods 
related to the ODSS proposed in this paper. Section 3 explains the composition and operation 
of the ODSS. Section 4 compares the proposed methods with the conventional methods to 
evaluate the performance. Section 5 explains the conclusion of the proposed paper and future 
directions of study. 
 

2. Related Work 

2.1 Vehicle Machine Learning 
Hobold and Silva [3] emphasize Pool boiling the qualification of heat flux using machine 
learning with an error rate of less than 10%. Visualization windows with the length of single 
capillary vessel may be enough. Real-time prediction is possible by using a hardware that is 
small-sized and cheap. Abstract processes with complicated phenomena are common in nature 
and industry, and many of them are not easy to test mathematically. For instance, Nucleate 
boiling heat transfer has plenty of applications, but the film boiling is an inappropriate 
computation technique. Until now, most correlations and computer tests to quantify boiling 
heat transfer depend on direct measurements of thermal hydraulic data, such as heater 
temperature, which is often invasive. Here the neural network-based models can quantify heat 
transfer using only direct and indirect visual information of the boiling phenomenon, without 
prior knowledge of the governing equations, which enables the non-intrusive measurement of 
heat flux based on boiling process imaging. 

Ning  et al. [4] mine the double layers of hidden states of vehicle historical trajectories, and 
then selects the parameters of Hidden Markov Model(HMM) by the historical data. In addition, 
it uses a Viterbi algorithm to find the double layers hidden states sequences corresponding to 
the just driven trajectory. Finally, it proposes a new algorithm for vehicle trajectory prediction 
based on the hidden Markov model of double layers hidden states, and predicts the nearest 
neighbor unit of location information of the next k stages. 

Li-Jie et al. [5] propose an optional ensemble extreme learning machine modeling 
technique to improve the wastewater quality predictions, due to the low accuracy and unstable 
performance of the conventional wastewater quality measurements. An extreme learning 
machine algorithm is added to the optional ensemble frame as the component model because it 
runs faster and provides better generalization performance than other machine learning 
algorithms. The ensemble extreme learning machine model gets over variations in different 
tests of simulations on a sing0le model. The optional ensemble based on a genetic algorithm is 
used for ruling out some bad components from all available ensembles to diminish the 
computation complexity and increase the generalization performance. 

Torben et al. [6] propose a supervised machine learning state estimation technique that can 
evaluate the current side-slip angle of a vehicle. It is composed of a recurrent neural network 
with gated recurrent units, an supplementary input projection and a regression head. This 
composition was selected to set a limit on the computational complexity of the model while 
preserving the expressiveness of the total system. It will also shows how equations of a 
simplified vehicle model is included to utilize existing domain knowledge. The results show 
that the neural network can come to an outstanding evaluation while generalizing over various 
tires, surfaces, and driving situations. Comparisons of different model variants on chosen data 
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permit us to make a conclusion on the adaptation to varying parameters and show a quality 
improvement through the physical model. 

Yang and John [7] propose a machine learning-based segmentation and classification 
algorithm, which consists of three phases. The first phase is to preprocess and to prefilter so 
that it can diminish noise and get rid of clear left and right turning events. The second phase is 
to employ a spectral time-frequency analysis segmentation technique so that it can generalize 
all potential time-variant lane-change and lane-keeping candidates. The final phase is to 
compare two  classification techniques, which are dynamic time warping feature with k 
-nearest neighbor classifier and hidden state sequence prediction with a combined hidden 
Markov model. 

2.2 Vehicle Sensor Data 
Feng et al. [8] propose a method to tackle the three-dimensional inverse thermal conduction 
(3D IHC) problem with the specific geometry of a thin sheet. The 3D thermal equation is 
simply converted to a 1D equation using modal expansions. By Laplace transformation, 
algebraic relationships are established which express the front surface temperature and heat 
flux in terms of those same thermal quantities on the back surface. It expands the transfer 
functions as infinite products of simplified polynomials using the Hadamard Factorization 
Theorem. The inverse Laplace transformations of these simplified polynomials draw up 
relationships for each mode in the time domain. The time domain operations are executed 
using repeated procedures to compute the front surface quantities from the data on the back 
surface. The repeated procedures require the numerical differentiation of noisy sensor data 
accomplished by the Savitzky-Golay method. To deal with the case when part of the back 
surface can not access sensors, the least squares fit is used to get the modal temperature from 
the sensor data. 

Xiaohui and Junfeng [9] present a two-phase based generous cooperative routing protocol 
for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a 
packet forwarding watchdog and an average connection rate based on the multipath weight 
method are used, where evidence is gathered from different watchdogs. Then, multihop relay 
decisions are made using a generous cooperative algorithm based on game theory. Finally, 
through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative 
routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging 
traffic. 

Ekim et al. [10] propose a new method for consolidating driving behavior and traffic 
context through signal symbolization. This symbolization framework is proposed as a data 
reduction method for driving researches. Continuous sensor signals were transformed and 
reduced into sequences of symbols (chunks) through a hierarchical Dirichlet process hidden 
Markov model and a nested Pitman–Yor language model. Then, co-occurrence chunking 
(COOC), the new consolidated method, was applied to the driving behavior and the traffic 
context chunks. After the consolidation, the COOC chunks were associated with prototype 
driving scenes by using latent Dirichlet allocation. Finally, the transformed sequence of 
chunks was clustered into groups. 

Gao et al. [11] propose that the cooperative multiple-input-multiple-output (MIMO) and 
data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in 
wireless sensor networks by reducing the amount of data for transmission and efficiently using 
network resources through cooperative communication. For this, a novel energy model is 
derived that considers the relationship between data generated by nodes and the distance 
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between them for a cluster-based sensor network using the integrated techniques. Using this 
model, the influence of the cluster size on the average energy consumption per node can be 
analyzed. 

Liang et al. [12] focuse on how to form clusters with high uniformity and to prolong the 
network lifetime. For this, it proposes a new clustering scheme named power- and coverage- 
aware clustering (PCC) to adaptively choose cluster heads according to a hybrid of the nodes’ 
residual energy and loyalty degree. In addition, the PCC technique is not dependent on node 
distribution or density, which does not have such node hardware limitations as self-locating 
capability and time synchronization. 

Stephanie et al. [13] propose a "no-flow-sensor" wind estimation algorithm for Unmanned 
Aerial Systems (UAS), which was based on ground speed and flight path azimuth from the 
autopilot's GPS system. The retrieval accuracy of the predefined profiles by the wind 
algorithm and its sensitivity to vertical aircraft velocity, diameter of the helical flight pattern 
and different data sampling methods were investigated. The algorithm with a correspondingly 
optimized set of parameters was then applied to various scientific flight missions under real 
wind conditions performed by the UAS Small Unmanned Meteorological Observer(SUMO). 

2.3 Vehicle Cloud 

Yi-Ke and Li [14] propose a composition-based approach for cloud computing 
(compositional cloud) using Imperial College Cloud (IC Cloud) as an impirical example. 
Cloud computing providers/adopters can to design and compose their own systems quickly 
and flexibly. Cloud computing systems will no longer be fixed, but dynamic and adjustable, 
depending on the requirements of different application domains. 

Bing et al. [15] propose a QoS-aware and quantitative trust-model that is composed of an 
initial trust value, a direct trust value, and a recommendatory trust value of service, which 
makes the provision, discovery, and aggregation of cloud services trustworthy. Thus, it can 
assure trustworthiness of service interoperation between users and services or among services 
in cloud environment. Simultaneously, service discovery method based on QoS-aware and 
quantitative trust-model is proposed, which makes a determined trustworthy relationship 
among a service requestor, a service provider and a service recommender. Users can find 
reliable service whose overall estimation value is higher. 

Sheng and Xu-Cheng [16] propose a synchro-ballistic control approach based on cloud 
model for the sake of reducing the angle error. First, the mechanism model of steering gear 
system is introduced. Second, the structure of synchro-control system of twin-rudder is 
proposed based on the master-slave control strategy. Third, synchro-ballistic controller based 
on cloud model is designed to solve the nonlinearity and uncertainty of system. Finally, the 
designed controller is tested via simulation under two different situations. 

Yukiko et al. [17] propose a technique for segmenting a 3D point cloud into planar surfaces 
using recently obtained discrete-geometry results. In discrete geometry, a discrete plane is 
defined as a set of grid points lying between two parallel planes with a small distance, called 
thickness. Unlike the continuous case, there appears a finite number of local geometric 
patterns (LGPs) on discrete planes. Besides, such an LGP does not have the unique normal 
vector but a set of normal vectors. 

Xiaojiang  et al. [18] propose to combine the vehicle cloud with the infrastructure-based 
cloud to expand the currently available resources for task requests on smartphones. In the 
proposed architecture, the vehicle cloud serves as a cloud service provider for smartphones. In 
addition,  a flexible offloading strategy (FOS) is proposed to perform task migration. The 
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vehicle cloud can discover and utilize resources that are not utilized in vehicles to accomplish 
application offloading for smartphones. The FOS estimates the efficiency of various cloud 
service providers based on current resource conditions and then selects the appropriate cloud 
service provider to perform the requested task. 

3. Design of an Optimal Driving Support Strategy(ODSS) for 
Autonomous Vehicles based on an Genetic Algorithm 

 
Fig. 1. The configuration of the ODSS 

 
A current autonomous vehicle determines its driving strategy by considering only external 
factors (Pedestrians, passengers, road conditions, etc.) without considering the interior 
condition of the vehicle. For example, Adaptive Cruise Control(ACC), which is currently 
introduced in the second stage of autonomous driving, is an intelligent form of cruise control 
that slows down and speeds up automatically to keep pace with the car in front of you, but 
because it does not take into account the vehicle's RPM on a slope, the problem arises that the 
RPM is not regulated and is maintained at an abnormal speed. To solve the problem, this paper 
proposes “An Optimal Driving Support Strategy(ODSS) for Autonomous Vehicles based on 
an Genetic Algorithm” which determines the optimal driving strategy of an autonomous 
vehicle by analyzing not only the external factors, but also the internal factors of the 
vehicle(consumable conditions, RPM levels, speed, etc.). The proposed ODSS consists of 4 
modules. First, a Data Communication Module (DCM) converts CAN, FlexRay, and HSCAN 
messages of vehicles into WAVE messages and sends the converted WAVE messages to the 
Cloud using V2X communication. Second, Data Management Module (DMM) classifies the 
converted WAVE messages into 3 types and stores the classified messages in a road state table, 
a sensor message table, and a vehicle state table. Third, The DMM sends the 3 types of 
messages stored in these tables to a Data Analysis Module(DAM), which analyzes them to 
determine the optimal driving strategy by using a Genetic algorithm stored in the Cloud. 
Fourth, a Data Visualization Module (DVM) displays the optimal driving strategy determined 
in the DAM and the current driving conditions on the vehicle display for easy recognition by 
the occupants of an autonomous vehicle. Fig. 1 shows the overall configuration of the ODSS.  
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3.1 A Design of the DCM 
The DCM transmits the measured sensor data to the cloud and the results analyzed in it to the 

vehicle for visualization on the user's display. Fig. 2 shows the configuration of the DCM.  
 

 
Fig. 2. The Configuration of the Data Communication Module(DCM) 

 
The DCM consists of the Transceiver receiving sensor data, the Controller storing the bus 

number linked with the sensor, the Message Queue storing the received sensor message, the 
WAVE Translator that converts the sensor message inside the vehicle into a WAVE message 
and sends the converted WAVE Message to the Cloud, and the Result Queue that receives the 
data analyzed in the Cloud and sends the analyzed data to the vehicle [19]. To begin with, the 
Transceiver receives CAN, FlexRay, and HSCAN messages and sends them to the Controller. 
The controller stores the bus number of the received messages and sends the messages to the 
Message Queue. The Message Queue consists of Real-time Priority Multiple Queues and 
Event Queues and the data transmitted from the sensors is composed of real-time sensing data 
and event sensing data. Because the event sensing data has to be processed faster than 
real-time sensing data, the Message Queue processes the message from Event Queue faster, 
and the messages of the Real-time Priority Multiple Queues are processed according to 
priority [20]. 

The Real-time Priority Multiple Queues store priorities separately between protocols and 
between messages inside the protocol. Because Priorities between protocols are defined in 
advance, there are no problems caused by priority conflicts. And because the priority of the 
message is increased according to how long the message stays in Message Queue, the problem 
that low-priority messages is not processed is solved.  

Because the Event Queues process sensing messages for event requests, they have higher 
priority than the Real-time Priority Multiple Queues. Message Queue sends messages to the 
WAVE Translator in sequence. The WAVE Translator receives a sensor message from the 
Message Queue and converts it into a WAVE message. Fig. 2 shows how the WAVE 
Translator converts CAN, FelxRay, and HSCAN messages into WAVE messages.  

 
1. The WAVE Translator removes the headers and trailers from the CAN and FlexRay and 

HS-CAN messages which are received from the Message Queue.  
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2. After removing the headers and trailers, the WAVE Translator generates WAVE 
messages by adding headers and trailers to PSDU(Data Field if a received message is a 
CAN message and HSCAN message, or Payload if it is a FlexRay message).  

3. It sends the generated WAVE message through V2C antenna. 
 

When the WAVE messages are accumulated in the Cloud, the Cloud analyzes the driving 
habits of the vehicle and transmits the analyzed optimal driving strategy to the DCM. The 
DCM sends the optimal driving strategy analyzed in the Cloud to the Result Queue, which 
controls the vehicle in a FIFO sequence.  

3.2 A Design of the DMM 

 
Fig. 3. The configuration of the DMM 

 
The DMM manages WAVE messages sent form the DCM as follows. The DMM generates 
and manages a road state table that stores the conditions of the road on which a vehicle is 
currently driving, a sensor message table that stores the vehicle's sensor data, and a vehicle 
state table that stores the driving state of the vehicle. Fig. 3 shows the configuration of the 
DMM and Fig. 4 shows each information of the 3 tables.   

The road state table has the vehicle number, V-Num, the slope of the road on which the 
vehicle is driving, Slope, the curvature of the road, Curve, and  the ID. The ID is given in 50 
ms. The DMM stores the vehicle's driving information in the road state table only when the 
vehicle is driving safely and the data stored in this road state table is used to be learned later in 
the DAM's genetic algorithm. The WAVE messages received from the vehicle are stored in 
the sensor message table. The sensor message table has the name of the sensor, Name,  the 
sensor value measured in a vehicle, Data, and vehicle number, V-Num. Finally, the vehicle 
state table has the speed of a vehicle, Speed, angle of steering, Angle, RPM, and LaneChange. 
The LaneChange indicates whether the lane is changed or not and the ID is given in 50 ms. The 
ID value of the vehicle state table has to be the same as that of  the sensor message table and 
the road state table. For example, because  the Time value in the Vehicle State table is 
2019-05-12 13:24:10.200, the ID is 1. Here, because the Time value in the sensor message 
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table is 2019-05-12:10.200~10.250 and belongs to the scope of 50ms, the ID is 1. In the same 
way ID in the road state table is 1. 

 
Fig. 4. Road state table, sensor message table, vehicle state table of the DMM 

 
Because the sensors inside the vehicle differ in both the data measurement cycle and the data 
measurement time, the DMM should check the duplicates of messages stored in the sensor 
message table. The DMM classifies the WAVE messages in 50 ms according to the time they 
are received, and deletes any duplicate WAVE messages in 50 ms. Fig. 5 shows how the 
DMM classifies messages in the sensor message table in 50ms and deletes duplicate messages. 
 

 
Fig. 5. The process to provide IDs and to remove duplicates in sensor messages table 
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First, the DMM stores the received WAVE messages in the sensor message table in the 

order in which they are received. When they are completely stored, it arranges the tuples in 
chronological order and assigns an ID in 50 ms. In Fig. 5, the sensor message table is sorted in 
chronological order after step1 and the ID of the tuples between 2019-05-12 13:24:10.200 and 
10.250 second is set to 1. Next, in step 2, the DMM removes the duplicated Name of among 
the tuples  with  ID=1 in the sensor message table and delivers all the tuples of the road state 
table, sensor message table, and Vehicle state table to the DAM. The DAM executes the 
genetic algorithm using the tuples it receives from the DMM.  

3.3 A Design of the DAM 
The DAM analyzes the driving habits of an autonomous vehicle by using a genetic algorithm 
based on big data stored in the Cloud. The Genetic algorithm generates a gene sequence by 
using the autonomous vehicle's driving information received from the DMM and determines 
the optimal driving strategy by using a combination between genes. Because the genetic 
algorithm requires a lot of data for learning, the safety of an autonomous driving vehicle 
cannot be guaranteed if a gene sequence is learned only with real-time driving data. To address 
this, the DAM in this paper can select an optimal driving strategy for autonomous driving 
because it learns the genes by using the vehicle information accumulated past in the DMM. 
The DAM consists of a Data Normalization Sub-module (DNS) that normalizes data received 
from the DMM and a Data Learning Sub-module (DLS) that learns a genetic algorithm. 
   

3.3.1 Data Normalization Sub-module(DNS) 
The type of data used by the DAM consists of the training data sets for training a genetic 
algorithm and the output data analyzed after training. Here, one training data set has a training 
input and a training output. The training input means the values of the road state table and the 
sensor message table received from the DMM, and the training output means the values of the 
vehicle state table. The DNS normalizes data to learn the genetic algorithm. The training data 
sets used to learn the algorithm are expressed as Formula 1. 
 

T = �{TX1 , TY1}, {TX2, TY2}, {TX3, TY3}, … {TX10000, TY10000}�, (1) 

 
Here, TX means a training input and TY means a training output. To learn the genetic 
algorithm, 10000 of the past data are used and the values for all slopes and curvatures must be 
the same. 
The DNS generates an initial set of chromosomes for RPM, speed, steering angle, and lane 
change to analyze the training input data. The RPM of the initial set of chromosomes will be 
selected as 1,000-6000, the speed, 0-250, and the steering angle, 0-90 and whether or not the 
lane is changed will be selected as 0 or1 randomly. The set of chromosomes generated by the 
genetic algorithm is evaluated according to the slope and curvature of the current road, and the 
optimal driving strategy is determined by the slope and curvature of the road as the generation 
passes. The DAM learns a set of chromosomes for 100 generations and applies a set of learned 
chromosomes to an autonomous vehicle. Formula 2 represents a set of chromosomes in the 
genetic algorithm. 
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Y = {yr, ya, ys, ylc}, (2) 

 
Here, yr means RPM, ya means steering angle, ys means speed, and ylc means  whether or not 
the lane is changed. The DNS normalizes the values of yr, ya, ys and ylcbetween 0 and 1. 
When all the values of Y are normalized, yr, ya, ys  and ylc  have a similar effect on the 
suitability when assessing the suitability of a set of chromosomes. The DNS normalizes them 
by dividing RPM by 10000, steering angle by 100 and speed by 1000. Formula 3 shows the 
process by which each value is normalized. Finally, all values of Y exist between 0 and 1. 

 

yR = 𝑅𝑅𝑅𝑅𝑅𝑅
10000

, yA = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
100

, yS = 𝑠𝑠𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
1000

, yLC = LaneChange, (3) 

 
The DNS generates a set of initial 100 chromosomes normalized between 0 and 1 and sends  
trailing data sets T and a set of 100 chromosomes to DLS. 
 

3.3.2 Data Learning sub-module(DLS) 
The DLS learns the genetic algorithm by receiving training data sets and an initial set of 
chromosomes from the DNS. The DLS uses the genetic algorithm, Algorithm1 to determine 
the optimal driving strategy of an autonomous vehicle. 
 

 
Algorithm 1. Genetic Algorithm for the optimal driving strategy of an autonomous 
vehicle 
input: radius, slope, bigdata 
init : parent[4][4], gene[100][60][4], fitness[10000][60], t=0, roulette; 
FOR (int i=0; i<60; i++){ 

gene[t][i][0] = random(bigdata.speed); 
gene[t][i][1] = random(bigdata.steeringAngle); 
gene[t][i][2] = random(bigdata.RPM); 
gene[t][i][3] = random(bigdata.laneChange); 

} 
WHILE(t<100) { 

FOR (int i=0; i<60; i++) { 
fitness[t][i] = f(radius, slope, gene[i]); 
fit = fit + fitness[t][i]; 

} 
 

FOR (int i=0; i<60; i++) { 
roulette[i] = fitness[t][i]/fit; 

} 
FOR (int i=0; i<4; i++) { 
  parent[i] = gene[t][random(roulette)] 
  gene[t+1][i] = parent[i]; 
} 
t ++; 
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FOR (int i=4; i<10000; i++) { 
  gene[t][i] = recombine(parent[0], parent[1], parent[2], parent[3]) 
} 
mutate(gene[t][i],0.05); 

} 
Output : gene[t] 

 
First, the DLS receives 100 sets of initial chromosomes from the DNS that are randomly set 

for learning RPM, speed, steering angle, and lane change. The definition of an initial set of 
chromosomes has already been described in 3.3.1. The DLS computes the suitability by using 
Formula 4 for 100 sets of randomly generated chromosomes. A typical genetic algorithm 
compares one training data with a set of chromosomes to find the least different values, or to 
find the best values among chromosomes. However, various driving strategies on road driving 
can exist in the same environment. Therefore, the DLS of this paper compares 10000 training 
outputs with 100 sets of chromosomes to calculate the suitability of a set of chromosomes. 
 

Ch(Y𝑘𝑘)  = −1 ∗ �
∑ (𝑇𝑇𝑌𝑌𝑖𝑖 − 𝑌𝑌𝑘𝑘)10000
𝑖𝑖=1

100
�, (4) 

 
Here, k is the value of 1 to 100 and Ch(Y𝑘𝑘) means the suitability of Y𝑘𝑘. Once the suitability of 

each chromosome is computed, the DLS sets the probability of selection as much as the 
suitability of each chromosome, and randomly selects two from 100 chromosomes to combine 
the two genes. The DLS uses an Arithmetic Crossover method to combine these two genes. 
The Arithmetic Crossover method computes the average of two sets of parent chromosomes to 
produce child chromosomes. Formula 5 determines the selected probability  according to the 
suitability of each set of chromosomes, and Formula 6 randomly selects the set of genes by 
applying P(Yk) from the entire chromosome set Y. Formula 7 shows the generation of a child 
chromosomes. 

   

P(Yk)  =
Ch(Yk)

∑ Ch(Yi) ∗ 10010000
𝑖𝑖=1

 (5) 

parents = for(k = 1, k < 100, k + +) random(Y, Yk, P(Yk)) (6) 

child =
parent1 + parents2

2
 (7) 

 
Here, P(Yk)  means the weight of a set of chromosomes. When a set of 100 child 

chromosomes is generated by repeating 100 times the process of Formula 5 to 7, the DLS 
produces a sudden mutation chromosome so that the genetic algorithm outputs a global 
minimum without falling into the local minimum. The global minimum means the optimal 
output value that the genetic algorithm can have. The local minimum means the output value 
that the genetic algorithm has is better than the output value around it, but it does not mean the 
global minimum. Fig. 6 shows local mimum point and Fig. 7 shows mutagenic computation. 
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Fig. 6.  Local Minimum and Global Minimum Point 

 
 

 
Fig. 7.  The generation process of  a set of mutant chromosomes 

 
  
The DLS generates 0.05% of the child genes as mutant genes randomly, and a set of mutant 

chromosomes by using reverse operations. The DLS randomly selects one of the child gene 
sets generated in Fig. 7, and randomly selects one of the genes from that set. Next, it 
reverses(in Fig. 7, 0.9) the selected gene value (in Fig. 7, 0.42) using a fixed maximum value 
that the gene can have. In this way, the DLS makes 0.05 percent of the total set of genes mutant 
genes. 

When a set of 100 child chromosomes is generated and the mutation operation is finished, 
the DAM again repeats the mutation computation process from Formula 4. If the learning 
times are specified up to 1000, and a set of chromosomes with a suitability less than 0.001 is 
generated, the DLS terminates learning of the genetic algorithm and stores the speed, RPM, 
lane change, and steering angle for slope and curvature of the road. 

 

3.3.3 Usage of the DAM 

The DAM computes an appropriate set of chromosomes for a particular slope and curvature of 
the driving road, generates an optimal driving table, and stores the set of chromosomes in the 
optimal driving table. Because the genetic algorithm computes the optimal driving strategy 
according to specific slopes and curvature by analyzing sufficient historical data, it does not 
need to perform deep-running, machine-running, etc. operations in real-time.  Fig. 8 shows the 
optimal driving table and how it communicates with an autonomous vehicle. 
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Fig. 8. The way that the Optimal driving table communicate with an autonomous vehicle 

 
 The DCM inside the vehicle transmits WAVE messages and Road state data to the DMM 
using V2C communication. The DMM classifies the received messages and data into 3 types 
and stores them in the road state table, sensor message table, and Vehicle state table. The 
DMM transmits the information of 3 tables to the DAM, and the DAM determines the optimal 
driving strategy by using genetic algorithms. The DAM stores the slope and curvature of the 
road used in the traing data set in the Slope and Curve field of the optimal driving table and the 
speed, steering angle, RPM, and lane change of the optimal driving strategy determined using 
the training data set in the Speed, Angle, RPM, and LaneChange field of the optimal driving 
table. 
A vehicle transmits to the DAM the slope and curve data of the road on which it is driving to 
the DAM in real time. The DAM searches for a set of chromosomes with similar slope and 
curvature values in the optimal driving table after inputting the slope and curvature of the 
vehicle which is currently in driving. If it exists, the DAM transmits it to the vehicle to 
implement the optimal driving strategy. 

 

3.4 A Design of the DVM 

Once the DAM determines the optimal driving strategy of the vehicle, a Data Visualization 
Module(DVM) visualizes the determined optimal driving strategy and the list of vehicle 
consumables' condition. The DVM visualises the driving strategy by using road features and  
the consumable condition by using the shape of a gauge. Therefore, the DVM allows the driver 
to accurately determine the optimal driving strategy of an autonomous vehicle and when the 
consumables will be replaced. Fig. 9 shows the process of DVM receiving data, visualizing it, 
and placing visualized data on a monitoring device. 

The Road Graphics Generator and the Gauge Graph Generator of the DVM visualize the 
driving strategy of an autonomous vehicle, while the Consumer Graphics Generator visualizes 
the consumables status of an autonomous vehicle. The Road Graphics Generator uses an arrow 
to indicate whether the vehicle is going straight or turning to the left or the right depending on 
the steering angle of the vehicle, and visualizes the lane of the road in which the vehicle is 
driving and the position of the current vehicle. The Gauge Graph Generator generates Gauge 
graphs by receiving the vehicle's speed and RPM and places them on the left side of the road 
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Graphics Generated by the Road Graphics Generator. The Consumables Graphics Generator 
indicates whether the current state of in-vehicle consumables needs to be replaced or not by 
receiving sensor data from the vehicle. The Consumerables Graphics Generator measures 10 
consumables status, and such specific consummables as Ignition Plug, Air Conditioning Filter 
that cannot be measured through the sensor measures the exchange period using the distance 
travelled. The Consumables Graphics Generator displays the consumables that must be 
replaced immediately in red, the consumables that must be replaced within 500 km in orange, 
and the consumables that are safe in green. The visualized information is placed on the display 
inside the vehicle. 

 
Fig. 9. The process in which the DVM visualizes data 

4. Experimental Results and Analysis 
In this paper three experiments were conducted to verify the validity of the ODSS. First, to 
judge whether sensor messages were accurately sent to the Cloud, the DCM was compared 
with exixting vehicle gateways in the loss rate of message transmission. Second, to judge 
whether the proposed driving strategy was accurate, the DAM was compared with the 
Multilayer Perception(MLP) and Random Forest(RF) in the accuracy of the analyzed driving 
strategies. Third, to measure the real-time of the DAM, the time it takes to determine the RPM, 
speed, steering angle and lane change was compared to the MLP using the vehicle's sensor 
data after learning. The experiment was conducted in a virtual environment, and Table 1 
indicates the environment in which the experiment was conducted. Third, the computation 
time was measured when DAM, MLP and RF decided the optimal driving strategy to measure 
the real-time of the DAM. The experiment was conducted in a virtual environment and Table 
1 shows the environment in which the experiment was conducted. 
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Table 1. The experiment environment 

CPU GPU RAM OS 

Intel i5-7400 Geforce GTX 1050 SAMSUNG DDR4 
8GB 

Window 10 
Education 

 
The DCM was compared with existing vehicle gateways in loss rate when the vehicle 

transmitted 500 to 5000 CAN messages, FlexRay messages and High Speed CAN (HSCAN) 
messages from a vehicle to the Cloud separately. Existing gateways had a loss rate of 19% 
when CAN messages were transmitted to Cloud, 12.7% when  FlexRay messages were 
transmitted to it, and 12.4% when HSCAN messages were transmitted. The DCM had an loss 
rate of 11.7% when CAN messages were transmitted to Colud, a loss rate of 7% when FlexRay 
messages were transmitted, and a loss rate of 10.4% when HSCAN messages were transmitted. 
The average loss rate for existing gateways was 14.7%, while that for the DCM was 9.7%. 
Therefore, since the DCM improved a loss rate of 5%, compared with existing gateways, it 
was more suitable for transmitting CAN, FlexRay and HSCAN messages to the Cloud than 
existing vehicle gateways. Table 2 shows the experiment result. 
 

Table 2. The experiment result of the DCM and existing gateways in loss rate 

The number 
of messages 

Loss rate 
CAN FlexRay HSCAN 

existing 
gateway DCM existing 

gateway DCM existing 
gateway DCM 

500 8.0% 7.0% 2.0% 2.0% 9.1% 8.2% 
1000 10.8% 9.0% 3.7% 2.7% 8.1% 8.1% 
1500 16.3% 7.6% 11.5% 4.5% 7.8% 8.4% 
2000 18.9% 10.7% 12.8% 7.2% 9.8% 9.2% 
2500 17.7% 7.6% 14.9% 9.5% 10.1% 9.3% 
3000 20.5% 11.4% 15.2% 8.9% 10.5% 9.7% 
3500 21.8% 12.5% 16.8% 7.8% 14.7% 10.5% 
4000 22.5% 13.8% 13.9% 9.2% 16.9% 12.4% 
4500 24.5% 16.8% 18.2% 9.1% 17.6% 13.3% 
5000 29.5% 20.4% 17.9% 8.7% 19.4% 15.2% 

 
Fig. 10 shows the accuracy of the driving strategies computed by the DAM, MLP and RF. 

To measure the accuracy of the DAM, the difference between the driving strategies 
determined by the DAM, MLP and RF is computed as a percentage. The accuracy of the DAM, 
MLP and RF was measured in determining the 10 driving strategies. The experiment result 
shows that the DAM has higher accuracy by about 0.3% than the MLP and by about 2.5% than 
the RF. That is, the accuracy of the DAM does not differ significantly from that of the MLP, 
but the DAM analyzes the data more accurately than the RF. 

 



5858                                                                           Son et al.: An Optimal Driving Support Strategy(ODSS) for Autonomous Vehicles 
based on an Genetic Algorithm 

 
Fig. 10. The comparison of the DAM with MLP and RF in accuracy 

 
Fig. 11 shows the computation time it took for the DAM, MLP and RF to determine the 

optimal driving strategy when they receive sensor messages from an autonomous vehicle. The 
computation time of DAM, MLP and RF was measured in determining 10 driving strategies. 
In the experiment, the DAM determined the optimal driving strategy by about 22% faster than 
the RF and by 40% faster than the MLP and sent it to an autonomous vehicle. That is, the 
DAM has an accuracy similar to the MLP, can determine how the vehicle is driving faster, has 
higher accuracy of 2.5% than the RF and can determine how the vehicle is driving 22% faster. 

 

 
Fig. 11. The comparison of the DAM with  MLP and RF in computation time 

 
In conclusion, the ODSS can transmit data by about 10% more accurately than existing 

in-vehicle gateways, and determine the vehicle's optimal driving strategy faster and more 
accurately than existing neural network models and real-time machine running methods. 
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5. Conclusion 
This paper proposed Optimal Driving Support Strategy (ODSS). It collects and stores 

sensor data of vehicles in the cloud, executes the genetic algorithm based on accumulated data 
to determine the vehicle's optimal driving strategy according to the slope and curvature of the 
road in which the vehicle is driving and visualizes the driving and consumables conditions of 
an autonomous vehicle to provide drivers.  

 To verify the validity of the ODSS, experiments were conducted on the DCM to transmit 
data from the vehicle to the Cloud and on the DAM to select an optimal driving strategy by 
analyzing data from an autonomous vehicle. The DCM had a loss rate about 5% lower than the 
existing vehicle gateways when transmitting CAN messages, FlexRay and HS-CAN messages 
from the vehicle to the cloud. Though the DAM has a similar accuracy to the MLP, it 
determines the optimal driving strategy 40% faster than it. And the DAM has a higher 
accuracy of 22% than RF and determines the optimal driving strategy 20% faster than it. Thus, 
the ODSS is best suited for determining the optimal driving strategy that requires accuracy and 
real-time.  

The advantages of ODSS proposed in this paper are as follows. First, The ODSS can be used 
more in a variety of areas in the future because it stores in the Cloud the past data of the safe 
vehicle driving and accumulates it. Second, because the ODSS sends only the key data needed 
to determine the vehicle's optimal driving strategy to the cloud and analyzes the data through 
the genetic algorithm, it determines its optimal driving strategy at a faster rate than existing 
methods. However, the experiments of the ODSS were conducted in virtual environments 
using PCs, and there were not enough resources for visualization. Future studies should test 
the ODSS by applying it to actual vehicles, and enhance the completeness of visualization 
components through professional designers. 
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