• Title/Summary/Keyword: autonomous surface ship

Search Result 90, Processing Time 0.021 seconds

A Review of Human Element Issues of Remote Operators on Maritime Autonomous Surface Ships (자율운항선박의 개발 및 운용을 위한 육상 운항사의 인적요인 이슈 고찰)

  • Kim, Hong-Tae;Yang, Young-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The development and operation of the MASS (Maritime Autonomous Surface Ship) is being actively discussed for more efficient and safer maritime transportation solutions. The autonomous navigation technology has positive aspects such as the prevention of marine accidents, improvement of fuel efficiency of ships and cost reduction, and negative aspects such as job loss, task change, and security problems. It is expected that there will be new human element issues such as the situation awareness of remote operators, because the shore-based control will be conducted when fully autonomous ships are in operation. In this paper, we consider major human element issues that should be factored in the development and operation of MASS, and suggest a method of HRA (Human Reliability Analysis) for P IFs (Performance Influencing Factors) of the remote operators that are expected according to the shore-based control.

3-D Localization of an Autonomous Underwater Vehicle Using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 3차원 위치평가)

  • 임종환;강철웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a 3-D localization of an autonomous underwater vehicle(AUV). Conventional methods of localization, such as LBL or SBL, require additional beacon systems, which reduces the flexibility and availability of the AUV We use a digital compass, a pressure sensor, a clinometer and ultrasonic sensors for localization. From the orientation and velocity information, a priori position of the AUV is estimated based on the dead reckoning. With the aid of extended Kalman filter algorithm, a posteriori position of the AUV is estimated by using the distance between the AUV and a mother ship on the surface of the water together with the water depth information from the pressure sensor. Simulation results show the possibility of practical application of the method to autonomous navigation of the AUV.

Legal Status and Major Issue of Maritime Autonomous Surface Ships (MASS) in International Law (자율운항선박의 국제법 지위와 주요쟁점에 관한 연구)

  • Chun, Jung-soo;Park, Han-seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.256-265
    • /
    • 2021
  • Ground, sea and air mobility, such as vehicles, ships, and airplanes, are generally operated by people. Based on the innovative development of autonomous decision-making systems and artificial intelligence (AI) following the recent fourth industrial revolution, research and development on maritime autonomous surface ships (MASS) is been actively performed around the world. Before the realization of the commercialization of MASS in international maritime transport, it is urgent to clarify the characteristics of this ship and its international legal status. This paper aims to analyze the concern of whether a ship without crew members will eventually be operated as a fully unmanned ship or can be recognized as a ship under international law as the number of crew members is gradually reduced owing to the development stage of autonomous ships. Consequently, based on the United Nations Convention on the Law of the Sea (UNCLOS) and the regulations of the International Maritime Organization (IMO), it was found that MASS has the same international legal status as general ships. In addition this paper presents the working principles of enacting and revising the IMO Conventions and international legal measures necessary for the safe operation of MASS.

A Study on the Policy Directions related to the Introduction of Smart Maritime Autonomous Surface Ship (MASS) (스마트 자율운항선박(MASS)의 도입정책 연구)

  • Park, Han-Seon;Park, Hae-Ri
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.234-235
    • /
    • 2019
  • Smart Maritime Autonomous Surface Ship(MASS) is aiming to provide eco-friendly smart maritime navigation service based on safety, reliability and efficiency for maritime safety and marine environment protection. In the future, it is expected to bring about a radical change across the marine industry such as marine, maritime, port, logistics, ship-building and so forth. Therefore, in this paper, policy priorities related to the introduction of MASS were identified, and response strategies for each industry were set up, and a policy plan for establishing a smart maritime logistics system covering shipping, port and shipbuilding fields was proposed.

  • PDF

Development of Autonomous Surface Robot for Marine Fire Safety (해양 소방 안전을 위한 자율수상로봇 개발)

  • Jeong, Jinseok;Sa, Youngmin;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2018
  • The marine industry is rapidly developing as a result of the increase in various needs in the marine environment. In addition, accidents involving ship fires and explosions and the resulting casualties are increasing. Generally, manpower and safety problems exist in fire fighting. A fire fighter in the form of an autonomous surface robot would be ideal for marine fire safety, because it has no manpower and safety problems. Therefore, an autonomous surface robot with the abilities of fire recognition and tracking, nozzle selection, position and attitude control, and fire fighting was developed and is discussed in this paper. The test and evaluation results of this robot showed the possibility of real-size applications and the need for additional studies.

Development and Performance Evaluation Results of Remote Control Systems for Maritime Autonomous Surface Ships (자율운항선박의 원격제어 시스템 개발과 성능평가 결과)

  • Hong-Jin Kim;Hwa-Sop Roh;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2024
  • Recently, research, development, and commercialization of maritime autonomous surface ships (MASS) and remote control are in progress. Remote control is intended to secure autonomous navigation environments for existing ships or early-stage MASS using a remote control system (RCS). The main function of an RCS is to control MASS using data transmission between the MASS and the remote control centre. Remote control by a remote control officer also has an important function. The purpose of this study was to develop RCS and a performance evaluation technique for operation data provided by the RCS. The experiment was conducted during the navigation period of a training ship 'Hannara' after building experimental equipment at both an onshore remote control center and a training ship. As a result of evaluating data transmitted and received using the developed RCS, it was confirmed that data transmission was possible within an error range of 0.1%p. Fourteen types of ship information reflecting the navigation environment of the training ship were confirmed to be transmitted and received. The RCS developed in this work complies with the three principles of remote control: safety, reliability, and availability. This study provides a core technology for the development of RCSs for MASS and the evaluation of data transmission performance.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves

  • Brizzolara, Stefano;Bonfiglio, Luca;Medeiros, Joao Seixas De
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.219-236
    • /
    • 2013
  • The accurate prediction of motion in waves of a marine vehicle is essential to assess the maximum sea state vs. operational requirements. This is particularly true for small crafts, such as Autonomous Surface Vessels (ASV). Two different numerical methods to predict motions of a SWATH-ASV are considered: an inviscid strip theory initially developed at MIT for catamarans and then adapted for SWATHs and new a hybrid strip theory, based on the numerical solution of the radiation forces by an unsteady viscous, non-linear free surface flow solver. Motion predictions obtained by the viscous flow method are critically discussed against those obtained by potential flow strip theory. Effects of viscosity are analyzed by comparison of sectional added mass and damping calculated at different frequencies and for different sections, RAOs and motions response in irregular waves at zero speed. Some relevant conclusions can be drawn from this study: influence of viscosity is definitely non negligible for SWATH vessels like the one presented: amplitude of the pitch and heave motions predicted at the resonance frequency differ of 20% respectively and 50%; in this respect, the hybrid method with fully non-linear, viscous free surface calculation of the radiation forces turns out to be a very valuable tool to improve the accuracy of traditional strip theories, without the burden of long computational times requested by fully viscous time domain three dimensional simulations.

Standardization Status in Maritime Industry Domain and ICT Convergence Trends (조선해양산업과 정보통신기술 융합 동향에 따른 표준화 현황)

  • Kim, JaeMyoung;Lim, Dong-sun;Kim, DoHyun
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.85-97
    • /
    • 2020
  • In the maritime industry, the convergence of information and communication technology (ICT) occurs in two areas. The first one is the convergence of e-navigation technology to apply ICT to the maritime domain. This was led by EU's initiative and is also being promoted in our country. The other one is the convergence of autonomous ship technology to apply various ICT technologies for commercial purposes. This initiative is being led by maritime industries. In this paper, we describe trends of e-navigation and maritime autonomous surface ship technology convergence. Subsequently, we explain the standardization status of performance and technical standard bodies, international standardization organizations, and related standard-developing organizations to provide the interoperability of these technologies. Finally, we examine ongoing projects in Korea and suggest future directions for their R&D and standardization.

자율운항선박 친숙화 교육 개발을 위한 기초연구

  • 김정민;장은규;정민;강석용;김대근;김창우;김경환;채종주
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.187-189
    • /
    • 2022
  • As the structure and operation method of MASS(Maritime Autonomous Surface Ship) are discussed accroding to the IMO degree, the interest and necessity for remote operators who manage and supervise the operation of MASS are increasing gradually. The form of MASS operation is clearly accompanied by various changes including new technologies and equipment in comparison with the current operation of ship. In IMO Degree 2 and 3, the capabilities that remote operators who will operate them must differ from those of existing seafarers(navigation officers, engineers and ratings). Regarding this remote operation, the NI(Nautical Institute) is the first in the world to present a syllabus and a curriculum of qualification for remote operator. Based on this, the paper introduces and compares the education model of MASS remote control operation and NI model, and further uses it as basic data for the creation of curriculum for future MASS remote operator.

  • PDF