• Title/Summary/Keyword: automotive ECU

Search Result 125, Processing Time 0.018 seconds

Development of a Rapid Control Prototyping Platform for Engine Control System (엔진 제어시스템을 위한 래피드 콘트롤 프로토타이핑 플랫폼에 관한 연구)

  • 송정현;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-165
    • /
    • 2003
  • The design and implementation of an engine control system has become an important area in developing a new car, but the implementation of an engine control system is becoming a tedious and time-consuming work as the level of complexity increases. In order to shorten the development cycle of the control system, rapid control prototyping (RCP) technique deserves developers' attention. A new RCP platform has been developed for an automotive engine control application. This prototyping system strictly adheres to the layered architecture of the final production ECU, and separates the automatically generated part of software, or the application area, from the hand coded area, which generally carefully designed and tested because of the hardware dependency and the efficiency of microcontroller. The $Matlab{\circledR}$ tool-chain of Mathworks Inc. has been selected as a base environment in this study. A newly developed Engine Control Toolbox of Real-Time $Workshop{\circledR}$ converts a graphically represented control algorithm into optimized application codes and links them with other parts of the software to generate executable code for the target processor.

A Study on the Adaptive Control of Spark Timing Using Cylinder Pressure in SI Engine (전기점화기관에서 실린더압력을 이용한 점화시기 적응제어에 관한 연구)

  • 조한승;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1996
  • The spark timing is one of major parameters to the engine performance and emissions. The ECU controls the spark timing based on preset values, which are functions of load and speed, in most of today's automotive SI engine. In this system, the preset spark timing can be different from optimum value due to the deviations from mass production, aging effects and so on. In the present study, a control logic is investigated for real time adaptation of spark timing to optimal value. It has been found that crank angle of miximum cylinder pressure is one of the appropriate parameters to estimate the optimum spark timing throught experiment. It has also been observed for spark timing convergence by variation of engineering model factors. The simulation program including engineering model for cycle by cycle variation of combustion is developed for surveying spark timing control logic. It is also shown that simulation results reflect experiment outputs and reasonableness of spark timing control logic for crank angle of maximum cylinder pressure.

  • PDF

Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator (변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석)

  • Jung, Gyuhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

A Study on the Improvement of Misfire Detection Method with Vibration by using the Weight Factor (후진동이 나타나는 실화 진단 방법에서 가중치를 이용한 성능 향상에 대한 연구)

  • Lim Jihoon;Lee Taeyeon;Kim Ealgoo;Hong Sungrul;Sung Jinho;Park Jaehong;Yoon Hyungjin;Park Jinseo;Kim Dongsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.74-80
    • /
    • 2005
  • This paper presents a misfire monitoring method by using the weight factor. According to OBD II(On-Board Diagnostics) regulations of the CARB (California Air Resources Board), an ECU (Electronic Control Unit) should detect misfires which occur in the internal combustion engine. A misfire is 1311owe4 by post-oscillations for short duration. Sometimes, the amplitude of oscillations may be as high as misfire and can be falsely detected as another misfire. To prevent this, the software designers do not attempt to detect another misfire for this short duration, during which the post oscillations exist. Because of this, ECU does not detect all the misfires and hence, the unstable state of automobile cannot be detected. If this happens for a long time, automobile may get damaged. To solve these problems, this paper suggests a new algorithm to detect misfire by using weighting factor Weighting factor is a concept to distinguish the misfire with the post oscillation and to improve the detection rate. This value of weighting factor is used for counting the misfire. This paper also shows the result of experiment done on a automobile using this software. The software is implemented using ASCET-SD which is preferred in the design of engine control. This paper's result show the possibility of improving the misfire detection by implementing this algorithm.

Study of Failure Examples for Emission Gas Control System in Gasoline Engine (가솔린 엔진 배출가스 제어장치에 대한 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Lee, Young Suk;Youm, Kwang Wook;han, Jae Oh;Lim, Ha young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The purpose of this paper is to study for the emission gas control of passenger car. The first example, the PCSV never open when operating condition, but it opened by causing malfunction because of trouble. As a result, the purge gas entered into surge tank, a mount of fuel was displayed with excessive supply on tester. Therefore, it certified the bad-condition of the engine when idling by decreasing of fuel injection quantity from engine ECU. The second example, the hose activating a EGR valve didn't supply the vacuum pressure because of assembling the other part. Thus, it knew the bad-condition of engine that the EGR valve would not work normally by leaking with the other port. The third example, as the rear oxygen sensor of two sensor were fault-installing by changing the sensor of other a car it could not detect of oxygen quantity. Finally, it found the phenomenon of abruptly decreasing vehicle speed when braking a car. Therefore, the system including with emission control has to drastically manage by maximizing condition to role decreasing the emission gas.

The Characteristics of Pressure Pulsation according to Operating Condition of a S.I Engine for Motorcycle (이륜차용 Sl엔진의 운전 조건에 따른 맥동 특성)

  • Lee Kihyung;Nam Hosung;Kim Yongla;Bae Jaeil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Recently, the international regulations about the exhaust emissions of the motorcycle have been strengthened. The electrically controlled fuel injection type motorcycle has been emphasized to meet with this regulation. However, since the pulsation phenomenon happens in the intake port of the motorcycle because of the characteristic of high speed and the smaller layout than the passenger car, there are many difficulties to select the factor about control parameters needed to develop the ECU system. In this paper, the pulsation values measured from the engine test were compared with the calculated one by WAVE, and it was analyzed the pulsation characteristic according to the driving condition and estimated the mass flow rate. This research showed that the lowest point of the pressure gets lowin the low load and the pulsation of pressure were increased in the high load. Also, the simulation program was verified by showing good prediction of the pulsation and air mass flow rate.

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

A Study on the Analysis of Design Parameters for Development of LSD (다판 클러치방식 차동제한장치 개발을 위한 설계인자 분석에 관한 연구)

  • Shin, Young-Ho;Lee, Dong-Won;Shin, Chun-Se
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • A differential case equipped with LSD(limited slip differential) has several advantages over a normal type for rear wheel drive vehicles. Specially, the torque distribution can be done between left and right drive wheel in the state of limited slip differential. Also although LSD types are very various according to operating type, medium and torque distribution, a multi-clutch type is generally applied to rear wheel drive vehicles. So, this study presents the analysis of design parameters for development of a friction plate for multi-clutch type LSD using vehicle road test, the simulation of analytical model and the development of vehicle dynamics model by a benchmark product. According to this investigation, the design parameters which are pre-load of coil spring, friction plate and contact area quantity, friction coefficient and TBR(torque bias ratio) for a friction plate are derived from experiment and simulation and consequently, vehicle dynamics model has been constructed for the development of friction plate for multi-clutch type LSD.

Evaluation of the Reliability of Crash Discrimination Algorithms by using the Monte Carlo Method (Monte Carlo 방법을 이용한 충돌 판별 알고리즘의 신뢰성 평가)

  • 김영학;정현용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.193-203
    • /
    • 2001
  • The Monte Carlo method was used to evaluate the reliability of crash discrimination algorithms. Through the Fast Fourier Transformation, crash pulses obtained during frontal crash tests of a mini van and a sports utility vehicle were transformed to signals in the frequency domain, and the signals were divided into basic signals and changeable signals. The changeable signals were modified through random generation, and they were combined with the basic signals. Then, the combined signals were transferred back to the time domain. In this way numerous crash pulses could be generated. For the generated pulses, crash discrimination algorithms were evaluated by examining whether they did not result in air bag deployment for the pulses requiring no air bag deployment and whether they resulted in time-to-fires faster than required time-to-fires for the pulses requiring air bag deployment. The crash discrimination algorithm in which the absolute value of the deceleration change multiplied by the velocity change or the summation of the absolute value of the deceleration change was used as a metric was Proven to be highly reliable.

  • PDF