• Title/Summary/Keyword: automobile industry

Search Result 905, Processing Time 0.03 seconds

Approval status and characteristics of work-related musculoskeletal disorders among Korean workers in 2020

  • Eun-woo Cha;Sae-mi Jung;Il-ho Lee;Dae Hwan Kim;Eui Hyek Choi;In-ah Kim;Yong-kyu Kim;Kyung-joon Lee;Yang Won Kang;Ho-gil Kim;Young-ki Kim
    • Annals of Occupational and Environmental Medicine
    • /
    • v.34
    • /
    • pp.31.1-31.14
    • /
    • 2022
  • Background: This study aimed to investigate the characteristics of work-related musculoskeletal disorders (WRMSDs) in occupational disease claims and identify patterns of WRMSDs for each body part by industry and occupation. Methods: This study analyzed the raw data of occupational disease claims for musculoskeletal disorders deliberated by the Occupational Disease Decision Committee of the Korea Workers' Compensation & Welfare Service in 2020. The data was classified into 6 body parts with the highest numbers of occupational disease cases by using the complete enumeration data on principal diagnoses and 4 types of subdiagnoses in the raw data. The characteristics and approval rates of WRMSDs by body part, industry and occupation were examined and summarized. Results: A total of 13,015 occupational disease cases for WRMSDs were classified, and lumbar spinal (back) diseases accounted for the largest proportion of claimed diseases, followed by shoulder, elbow, wrist, knee, and neck diseases in a descending order. The occupations with the highest and second highest numbers of occupational disease cases by body part were found to be automobile assemblers and production-related elementary workers for the neck, school meal service workers and cooks for the back, construction frame mold carpenters and school meal service workers for the shoulder, elementary workers in mining and food service workers for the elbow, food service workers and automobile parts assemblers for the wrist, and ship welders and school meal service workers for the knee. Conclusions: This study examined the characteristics and approval status of WRMSDs by body part and occupation. Based on the study results, management strategies for the prevention of WRMSDs should be established regarding occupations with a high risk of WRMSDs for each body part.

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF

Shape Design of Adhesive Joints for Strength Improvement of Epoxy Adhesive Structures (에폭시 접착제 접합구조물의 강도향상을 위한 접착부 형상설계)

  • Seo, Do-Won;Kim, Hyo-Jin;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.783-790
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5 mm/min. As a result, the load-displacement distribution was shown a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

Characteristics of Fatigue Crack Growth for Camshaft Material Applied to High Frequence Induction Treatment (고주파열처리를 적용한 캠 샤프트 소재의 피로균열진전 특성)

  • Lee, Hyun-Jun;Park, Sung-Ho;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.46-52
    • /
    • 2009
  • Nowadays, many components in automobile, aircraft, offshore structure and industry require lightness and high strength. However, since developments of advanced materials have limitations, it mainly is applying to method of surface hardening. This study offered research about camshaft that is one among engine important component. The material used in this study is 0.53% carbon steel as structure material of camshaft, splineshaft, coupling, pulley, driveshaft et cetera. Camshaft is processed using mainly carbon steel, and receives wear and fatigue by special quality high speed of parts. Therefore, camshaft need surface hardening to improve camshaft's fatigue life and increase durability of engine. This study compare to residual stress and martensite microstructure created by high frequency induction treatment, and these results lead to the conclusion of fatigue crack growth characteristics.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.

A Study on the Mechanical Characteristics and Mold Technique of the Automobile Valve Housing using High Pressure Die Casting (고압다이캐스팅을 이용한 자동차 밸브하우징의 주조방안 및 기계적 특성에 관한 연구)

  • Lee, Jong-Hyung;Yi, Chang-Heon;Lee, Sang-Joong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.301-308
    • /
    • 2006
  • Today's automobiles are changing into miniaturization and light weight for saving natural resources and energies. In order to raise the sufficiency of fuel consumption, new mechanism and components are required. Therefore, the expectations on the new materials are very high. Especially, Al materials are widely used to reduce the motors weight. Al using in automobiles is mostly casting material, and the material is developing rapidly in step with technical innovation. Al die casting has become an important field, as we are turning today's motor into light weight. One of the parts in steering system, valve housing, plays a role to reduce the operating effort of drivers. If valve housing being a part of steering system is produced by gravity casting, the space that manufacturing equipments are installed will be increased, and more energies and workers will be needed.

  • PDF

Combustion in Methane-Air Pre-Mixture with Water Vapor -Burned Gas Analysis- (물혼합에 의한 메탄-공기 예혼합기의 연소(4) - 연소가스분석-)

  • Kwon, Soon-Ik;Kim, Sang-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Burned gas of methane-air mixtures with water vapor have been analysed to study the exhaust emission using gas-chromatography and computation. The computations were carried out for the gas analysis using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.6 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed CO, $CO_2$ decreased and $H_2$ increased by increasing the water contents. The CO increased and $CO_2$ decreased by increasing the ambient temperature. The $CO_2$ shows the maximum product at equivalence ratio 1.0, in otherwise the $CH_4$ produced the minimum values in the same range. The results showed little difference between these two methods.

Study on Surface Roughness Characteristics of Cutting Thread Sensors (절사센서의 표면거칠기 특성에 관한 연구)

  • Son, Jae-Hwan;Lee, Ho-Young;Park, Chul-Woo;Roh, Joon-Ho;Han, Chang-Woo;Oh, Chang-Hwan;Seo, Min-Kyo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.195-200
    • /
    • 2007
  • These days, various and complex threads are developed, so it is necessary to develop the cutting a thread sensors for checking a cut thread in severe environment and it is very important to evaluate the quality of the cutting a thread sensors. The analysis of variance(ANOVA) method is very useful method on the quality evaluation field. In this study, the quality is evaluated by one way layout ANOVA method with the surface roughness data. The experiment is carried out by 3 sensors and the result show that the sensors have the good quality in precision.

  • PDF

Evaluation of Cleaning Method for Remanufacturing Using Start Motor of Vehicle (차량용 스타트모터를 활용한 재제조 세척방법 평가)

  • Park, Sang Jin;Son, Woo Hyun;Jeon, Chang Su;Mok, Hak Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.381-392
    • /
    • 2020
  • The necessity and the importance of the remanufacturing are increasing day by day along with environmental problems. Many studies are being conducted on remanufacturing, but the research for cleaning is much lacking. This study aims to evaluate the effective cleaning method for remanufacturing of start motors, one of the automobile parts. The cleaning process consists of oil stain removal, drying and rust removal processes. In this study, the two processes were conducted except for the drying process which has little influence on cleaning. The methodology for cleaning agent selection, degreasing and rust removal process was presented. For each methodology, five analysis factors were calculated by two-way comparison according to the process, and the values were evaluated quantitatively by substituting them into the evaluation table. In the selection of cleaning agent, neutral system, ultrasonic cleaning in degreasing, and grinding in rust removal were selected as the best cleaning methods.